CONFERENCE ## On the Feasibility of Simple Transformer for Dynamic Graph Modeling Yuan Fang Yuxia Wu Singapore Management University #### Motivation Discard the fine-grained temporal information within the snapshot Difficult for capturing long-term dependency within historical graph data (c) Self-attention in Transformer Naturally support continuous sequence Self-attention --> long-term dependency #### Contribution: - * We explore the potential of the Transformer architecture for modeling dynamic graphs - * We propose a simple yet effective Transformer-based approach for dynamic graphs without complex modifications - * We introduce a novel strategy to map a dynamic graph into a set of sequences with special tokens to improve the scalability ## Framework: SimpleDyG ## Dynamic graph $$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T}, \mathcal{X})$$ \mathcal{V} : nodes \mathcal{E} : edges \mathcal{T} : time domain χ : input feature matrix #### Temporal Ego-graph ☐Temporal ego-graph for one node: $$w_i = \langle b, c, d, e \rangle$$ ☐Training sample: • Input: $x_i = \langle |hist| \rangle, a, b, c, d, e, \langle |endofhist| \rangle$ • Output: $y_i = \langle |pred| \rangle, f, g, \cdots, \langle |endofpred| \rangle$ #### **Temporal Alignment** □Segment the time domain into *T* time steps $$S_i^1 = \langle b \rangle$$ $S_i^2 = \langle c, d \rangle$ $S_i^3 = \langle e \rangle$ ☐Training sample: • Input: $x_i' = \langle |hist| \rangle, a, \langle |time1| \rangle, b, \langle |time2| \rangle, c, d, \langle |time3| \rangle, e, \langle |endofhist| \rangle$ • Output: $y_i' = \langle |pred| \rangle \langle |time4| \rangle S_i^4 \langle |endofpred| \rangle$ #### **Experiment** #### **Datasets** | Dataset | UCI | ML-10M | |------------------------------|---------------------------|----------------------------| | Domain
Nodes
Edges | Social
1,781
16,743 | Rating
15,841
48,561 | | | | | | Dataset | Hepth | MMConv | |---------|----------|--------------| | Domain | Citation | Conversation | | # Nodes | 4,737 | 7,415 | | # Edges | 14,831 | 91,986 | | | | | ### Results | 7 | | | | | | | | | |----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|-------------------| | | UCI | | ML-10M | | Hepth | | MMConv | | | | NDCG@5 | Jaccard | NDCG@5 | Jaccard | NDCG@5 | Jaccard | NDCG@5 | Jaccard | | DySAT [37] | 0.010±0.003 | 0.010±0.001 | 0.058±0.073 | 0.050±0.068 | 0.007±0.002 | 0.005±0.001 | 0.102±0.085 | 0.095±0.080 | | EvolveGCN [32] | 0.064±0.045 | 0.032 ± 0.026 | 0.097 ± 0.071 | 0.092 ± 0.067 | 0.009 ± 0.004 | 0.007 ± 0.002 | 0.051±0.021 | 0.032 ± 0.017 | | DyRep [40] | 0.011±0.018 | 0.010±0.005 | 0.064±0.036 | 0.038±0.001 | 0.031±0.024 | 0.010±0.006 | 0.140±0.057 | 0.067±0.025 | | JODIE [20] | 0.022±0.023 | 0.012 ± 0.009 | 0.059±0.016 | 0.020 ± 0.004 | 0.031±0.021 | 0.011 ± 0.008 | 0.041±0.016 | 0.032 ± 0.022 | | TGAT [49] | 0.061 ± 0.007 | 0.020 ± 0.002 | 0.066±0.035 | 0.021 ± 0.007 | 0.034 ± 0.023 | 0.011 ± 0.006 | 0.089±0.033 | 0.058 ± 0.021 | | TGN [36] | 0.041±0.017 | 0.011 ± 0.003 | 0.071±0.029 | 0.023 ± 0.001 | 0.030 ± 0.012 | 0.008 ± 0.001 | 0.096 ±0.068 | 0.066 ± 0.038 | | TREND [44] | 0.067±0.010 | 0.039 ± 0.020 | 0.079±0.028 | 0.024 ± 0.003 | 0.031±0.003 | 0.010 ± 0.002 | 0.116±0.020 | 0.060 ± 0.018 | | GraphMixer [6] | 0.104±0.013 | 0.042 ± 0.005 | 0.081±0.033 | 0.043 ± 0.022 | 0.011 ± 0.008 | 0.010 ± 0.003 | 0.172±0.029 | 0.085 ± 0.016 | | SimpleDyG | 0.104±0.010 | 0.092±0.014 | 0.138±0.009 | 0.131±0.008 | 0.035±0.014 | 0.013±0.006 | 0.184±0.012 | 0.169±0.010 |