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Abstract—Next POI recommendation has been studied extensively in recent years. The goal is to recommend next POI for users at

specific time given users’ historical check-in data. Therefore, it is crucial to model both users’ general taste and recent sequential

behaviors. Moreover, different users show different dependencies on the two parts. However, most existingmethods learn the same

dependencies for different users. Besides, the locations and categories of POIs contain different information about users’ preference.

However, current researchers always treat them as the same factors or believe that categories determine where to go. To this end, we

propose a novel method named Personalized Long- and Short-term Preference Learning (PLSPL) to learn the specific preference for

each user. Specially, we combine the long- and short-term preference via user-based linear combination unit to learn the personalized

weights on different parts for different users. Besides, the context information such as the category and check-in time is also essential to

capture users’ preference. Therefore, in long-termmodule, we consider the contextual features of POIs in users’ history records and

leverage attentionmechanism to capture users’ preference. In the short-termmodule, to better learn the different influences of locations

and categories of POIs, we train two LSTMmodels for location- and category-based sequence, respectively. Then we evaluate the

proposedmodel on two real-world datasets. The experiment results demonstrate that our method outperforms the state-of-art

approaches for next POI recommendation.

Index Terms—Next POI recommendation, attention mechanism, user preference, personalization

Ç

1 INTRODUCTION

RECENT years have witnessed significant development of
location-based social networks (LBSNs), such as Four-

square, Gowalla, Facebook Place, and Yelp, etc. Particularly,
users can share their locations and experiences with their
friends by checking-in points-of-interest (POIs). A check-in
record usually contains the visited POI with its associated
contexts that describe user movement, including the time-
stamp, GPS and semantics (e.g., categories, tags, or com-
ments). The massive check-in data generated by millions of
users in LBSNs provide an excellent opportunity to explore
the intrinsic pattern of user check-in behavior [1], [2], [3],
[4]. For example, we can recommend POIs for users based
on their check-in records, which not only help users to
explore their interested places but also benefit for business
to attract more potential customers [5], [6], [58], [59].

The check-in sequences implicitly reflect users’ preference
on POIs and the daily activity patterns of users [7], [8].

Recently, next POI recommendation has received significant
attention in research community [9], [10], [11], [58]. Excepted
for users’ general preference (long-term preference), next
POI recommendation additionally considers the sequential
patterns of users’ check-in records (short-term preference).

Our work is motivated by the following inspirations:

1) Users’ long- and short-term preference on POIs co-
determine where theywill go next time. Therefore, it is
necessary to consider the two factors together. In addi-
tion, different users show different dependencies on
long- and short-term impact. Some users may rely
more on long-term preference when making decisions,
while others rely more on short-term preference. For
example, one user may like outdoor entertainments
from long-term preference aspect. But for some reason,
he only goes outside several times during the most
recent period. Then if he relies more on long-term pref-
erence, we will recommend some outdoor places for
him. Otherwise, we will recommend him some indoor
activities. Thus, it is crucial to learn specific weights on
long- and short-term preference for different users to
achieve personalized recommendation. However, cur-
rent researchers always fail to consider users’ personal-
izeddependencies on long- and short-termpreference.

2) The check-in behaviors of users are autonomous and
elusive, leading it difficult to capture users’ long-term
regularity. The context information is essential to cap-
ture users’ preference [60]. At different time and cir-
cumstances, users may prefer different POIs.
Therefore, to better learn users’ long-term preference
for personalized recommendation, it is important to
consider the context information of POIs. For example,
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users will go to restaurants at the time to have diner.
Then after having diner over one hour, theywill go to a
pool for swimming or a park for relaxing.

3) The activity purpose and check-in locations are
inseparable. Excepted for the location-based sequen-
ces, the category-based sequences are also essential
to exploit the category information when modeling
users’ behaviors. Users may prefer different catego-
ries at different time. We conduct some statistical
analysis of the dataset and take some examples to
observe the temporal regularity of the categories.

Fig. 1a shows the check-in numbers of different categories
at different time.We split the 24 hours into several fragments
to show the statistical regularity.We can observe that the dis-
tributions of check-in time for different categories are differ-
ent. For example, themost frequent time for users to check in
at the coffee shop is 11: 00.am -13: 00.pm. They may just fin-
ish the lunch and then take a coffee to refresh themselves.
The most frequent time for bar is 23: 00.pm - 4: 00.am, which
is also in line with people’s daily behaviors to relax and
drink. Fig. 1b shows the distributions of check in categories
at different time slots. We can also observe the difference of
the distributions of categories at different time. For example,
at 11: 00.am - 13: 00.pm, users mostly check-in at coffee shop,
home, and Gym/Fitness Center. At 23:00.pm-1:00.am, users
usually go to the bar or at home.We can conclude that differ-
ent categories have different distributions of time, and differ-
ent time slots have different distributions of categories Thus,
the temporal sequence of categories in users’ check-in history
is also essential to learn users’ behaviors.

To this end, we propose a Personalized Long Short-term
Preference Learning (PLSPL) model for next POI recom-
mendation. Concretely, we integrate the long- and short-
term preference together with user-based linear combina-
tion unit to capture users’ personalized dependencies on

the two parts. In long-term module, we learn contextual fea-
tures of POIs in their check-in history and utilize attention
mechanism to better capture users’ long-term preference. In
short-term module, we leverage LSTM to model the short-
term sequential preference of users. Specially, we learn loca-
tion-level and category-level preference by training two par-
allel LSTM models. Finally, we fuse the long-term and
short-term together in a personalized way to obtain the final
probabilities of candidate POIs.

The main contributions of this paper are summarized as
follows:

1) We propose a unified model to learn the long-term
and short-term preference of users. Specially, we
consider personalized dependencies on long- and
short-term preference for different users by user-
based linear combination unit.

2) For long-term preference, we extract the contextual
features of POIs in users’ check-in history and utilize
attention mechanism to further characterize the gen-
eral taste of users.

3) For short-term preference, we integrate the location-
level and category-level preference together by two
parallel LSTMmodels to better capture users’ sequen-
tial behaviors.

Comparing with our preliminary work in [58], we have
made some improvements as follows:

1) In order to improve the personality of our recom-
mendation, we introduce a new user-based linear
combination unit in this paper. By learning per-
sonalized weights of the long-term and short-term
modules, our model can better captured the spe-
cific preferences for different users. To explain the
weights of the long and short term to the final
decision, we also provide a user study to analysis
the different influences of the long-term and
short-term sequences.

2) More detailed steps and explanations of the consid-
eration behind the designs of all the parts in our pro-
posed method are provided. For example, we give
more description in the embedding layer and atten-
tion mechanism in long-term module; the LSTM
model and feature combination in short-term mod-
ule; the fusion of each module in the output layer.

3) We conduct more comparison experiments and dis-
cussions compared with [58]. We compare our
method with more baselines to demonstrate the
advantage of our method and provide more compre-
hensive explanations about the results. In additions,
more discussions about each part of our model are
provided in this paper such as the impact of the fac-
tors in each module, the number of users’ records
and the dimensions of locations and categories.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of the related work about
next POI recommendation. Section 3 describes our task and
some definitions briefly. The overview of the proposed
model is introduced in Section 4. Then we give the experi-
mental results and some discussions in Section 5. Finally,
we make a conclusion on our study in Section 6.

Fig. 1. The statistical analysis of the dataset.
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2 RELATED WORK

In this section, we give a brief review about next POI recom-
mendation. Different from general location recommendation
that mainly exploit users’ preferences on POIs, next POI
recommendation additionally considers the sequential infor-
mation of users’ check-in history. In this part, we firstly intro-
duce the general location-based recommendation methods.
Then we introduce the related works on next POI
recommendation.

2.1 Location-Based Recommendation

Location recommendation has been widely studied in
location-based services. Generally, the most well-known
approaches of personalized recommendation are Collabora-
tive Filtering (CF) [12], [13], Matrix Factorization(MF) [14],
[15]. Collaborative Filteringmethodfirstlymines similar users
from users’ check-in history. Then recommend POIs accord-
ing to similar users’ check-in records. CF-based method has
been demonstrated as an effective approach for recommender
system. However, this method suffers the data sparsity prob-
lem leading it difficult to identify similar users.Matrix Factor-
ization based methods have become the effective approaches
to collaborative filtering. The basic idea of MF methods is to
factorize the user-item matrix into two latent matrices which
represent the characteristics of users and items.

Compared with other recommendation systems, location
recommendation has richer contextual information such as
temporal, spatial, textual, visual, social, sentimental informa-
tion and so on. Zhao et al. [16] proposed a Geo-Temporal
sequential embedding rank (Geo-Teaser) model for POI rec-
ommendation. In temporal embedding module, they cap-
tured the contextual check-in information and the temporal
characteristics of POIs. In geographical module, they learn
the geographical influence via a hierarchical pairwise prefer-
ence ranking model. Except for the rich contextual informa-
tion, the data scarcity problem also brings challenges to POI
recommendation. To tackle the data scarcity and various
context problem, Yang et al. [17] proposed a semi-supervised
learning framework named Preference And Context Embed-
ding (PACE) jointly learning the embeddings of users and
POIs. In this model, they built two context graphs: user
graph based on friendship and POI graph based on geo-
graphical distance among POIs. Then they addressed the
data scarcity and various context problem by enforcing
smoothness among neighboring users and POIs on the two
context graphs. On the other hand, they leveraged neural
networks to model non-linear complex interactions between
users and POIs. To tackle the extreme sparsity of user-location
matrices when using traditional matrix factorization method,
Lian et al. [18] proposed GeoMF þþ model. This model inte-
grated geographical modeling and implicit feedback-based
matrix factorization, so that geographical modeling can be
incorporated into matrix factorization. Qian et al. [19] pro-
posed a spatiotemporal context-aware and translation-based
recommender framework. They leveraged knowledge graph
embedding to learn the relationship among users, POIs, and
spatiotemporal contexts.

The complex nature of user interest and the sparsity of
check-in data bring significant challenges for POI recommen-
dation. It is difficult to capture users’ true interest, because the

check-in records and the unobserved ones couldn’t reflect
whether the user really like the location. Therefore, Li et al. [20]
proposed a unified model to learn users’ general tastes by fus-
ing intrinsic and extrinsic interests. In this way, this model
could learn fine-grained and interpretable interest of users. In
this model, they first define locations that user can reach as
their activity areas. Then they utilized the locations in activity
area to learn user’s intrinsic interest with pairwise ranking
method. Similarly, they utilized the locations outside activity
area to capture users’ extrinsic interest.

Except for check-in POI recommendation, some
researchers also focus on travel recommendation which
recommends POIs or travel route for users. Jiang et al. [5]
proposed an author topic model-based collaborative fil-
tering (ATCF) method to recommend POIs for users. This
model learns users’ travel preference topics extracted
from the description information of photos. To utilize the
visual information in photos for tour recommendation,
Zhao et al. [21] proposed a Visual-enhanced Probabilistic
Matrix Factorization model (VPMF), which integrates
visual features into the collaborative filtering model to
learn user interests. Jiang et al. [22] proposed a personal-
ized travel sequence recommendation method to recom-
mend travel route for users. They fuse many contextual
information include tags, cost, visiting time and season to
mine the topical package space of users and routes. Then
they obtained the ranked list of routes according to the
similarity between user package and route package. And
the ranked routes were further optimized by the similar-
ity among users’ travel records.

2.2 Next POI Recommendation

The goal of next POI recommendation is to recommend
POIs at next time based on the history records of users. It is
crucial to take the sequential information into account. In
the literature, effective methods have been widely applied
for sequential data analysis and next item recommendation.
Generally, the widely used approaches of next POI recom-
mendation are Markov Chains [23], [24], ranking-based
methods [25], [26] and Recurrent Neural Networks (RNNs)
based methods [27], [28].

2.2.1 Markov Chains-Based Methods

Markov Chains-based methods model the sequential corre-
lation between POIs based on users’ check-in sequences. A
transition matrix over POIs is estimated which gives the
probability of the next POIs based on the recent POIs visited
by user. Due to the sparse transition data, it is difficult to
estimate the transition probability in Markov Chain. FPMC
[29] is a state-of-art method which apply personalized Mar-
kov chains and matrix factorization to learn the transition
matrix and the general taste of users, respectively. They
applied Matrix Factorization method to learn the general
taste of a user by factorizing the matrix over observed user-
item preferences. Then MC method was used to model the
short-term sequential behavior to predict the next action
based on the recent actions of a user. However, the complex
nature of user interest and the sparsity of check-in data
present significant challenges to learn the long-term and
short-term preference of users. Following this idea, Cheng
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et al. [9] combined personalized Markov Chain and local-
ized region constraint, and proposed a novel Matrix Factori-
zation method, namely FPMC-LR. However, in FPMC, each
item was represented with two independent vectors, failing
to model the latent relationship between them. Therefore,
Feng et al. [11] proposed a personalized ranking metric
embedding method (PRME) to effectively compute the loca-
tion transition in Markov chain. This model leveraged met-
ric embedding method which represents each POI as a
single point in a latent space to embody the latent relations
of POIs.

2.2.2 Ranking-Based Methods

In terms of ranking-based methods, Bayesian Personalized
Ranking (BPR) [30] is a widely studied method with promis-
ing performance. It is a pairwise approach, which takes the
implicit feedback as the relative preference rather than abso-
lute one. Zhao et al. [31] established a spatial-temporal latent
ranking (STELLAR) model to capture the impact of time
information on next POI recommendation. For each POI,
three latent vectors were used to describe the POI-user, POI-
time, and POI-POI interactions respectively. Then a ranking-
based pairwise tensor factorization framework was used to
learn these feature vectors and the ranking list of next check
in possibilities. However, the aforementioned method still
overlooked category-level transition patterns which reflect
human daily activities. Therefore, He et al. [32] proposed List
wise Bayesian Personalized Ranking (LBPR) method to pre-
dict users’ next category. The candidate POIs were ranked
based on the spatial influence and categorical influence.
Besides, Jiao et al. [33] proposed a novel real-time next POI
recommendation system. They integrated geographic and
preference information to calculate a POI score to obtain the
ranking list.

2.2.3 RNNs-Based Methods

Recently, recurrent neural networks such as Long Short-term
Memory (LSTM) [27], [28] have demonstrated ground-break-
ing performance on modeling sequential data [34], [35], [36],
[37], [38], [39]. RNNs have achieved much success in lan-
guage modeling [40], [41], [42], machine translation [43],
[44], speech recognition [45], [46], image caption [47], [48],
visual question answering [49], [50] and recommendation
[10], [51]. However, the original RNNs cannot well model
the contextual information such as temporal, spatial infor-
mation and user activity preference which play a key role in
analyzing user behaviors. Therefore, existing studies focus
on exploiting users’ sequential preference on POIs by inte-
grating various context information into RNNs framework.

For example, Zhu et al. [52] proposed a time-LSTMwhich
equipped LSTM with time gates to model time intervals
between users’ actions. It was good at modeling the order
information in sequential data. Besides, it can also model
the interval information between locations. Wang et al. [55]
proposed a Similarity-based POI Embedding and recurrent
Neural network with Temporal influence (SPENT). They
organized the POIs into a similarity tree based on the
embedding vectors. Then LSTM added with temporal dis-
tance influence was used to learn users’ transition behav-
iors. Excepted for the temporal information, the spatial

information is also essential to model users’ preference. For
example, to model spatial and temporal information, Liu
et al. [10] proposed Spatial Temporal Recurrent Neural Net-
works (ST-RNN) model. ST-RNN utilized RNN to capture
the periodical temporal contexts with time-specific transi-
tion matrices. Meanwhile, this model incorporated dis-
tance-specific transition matrices to characterize dynamic
properties of geographical properties of distances. To cap-
ture user intentions effectively by fusing various contextual
information, Yao et al. [53] proposed a method named
Semantics-Enriched Recurrent Model (SERM) which mod-
eled spatiotemporal regularities, activity semantics, and
user preferences in a unified way. Considering that users’
activity and location preferences interplay with each other,
Liao et al. [54] proposed Multi-task Context Aware Recur-
rent Neural Network (MCARNN) to leverage the spatial-
activity topic for activity and location prediction. To inte-
grate the context information and sequential pattern
dynamically, the author proposed a novel Context Aware
Recurrent Unit (CARU) as hidden layer unit.

Recently, attention mechanism has been widely used in
image caption, machine translation and recommendation.
Ying et al. [56] proposed Sequential Hierarchical Attention
Network(SHAN) which combined long-term and short-
term preferences to recommend next item for users. But
they failed to consider the sequential behavior of users.
Feng et al. [57] proposed an attentional recurrent model
named DeepMove to predict human mobility. Firstly, a
multi-modal embedding module was designed to convert
the sparse features (e.g., user, location, time of day) into
dense representations. Then a historical attention module
was used to capture the multi-level periodical nature of
human mobility by jointly selecting the most related histori-
cal trajectories under the current mobility status.

3 PROBLEM DESCRIPTION

Before describing our approach for next POI recommenda-
tion, we introduce the notations in this paper. Let U ¼
fu1; u2; . . . ; uMg be a set of users, and L ¼ fl1; l2; . . . ; lNg be a
set of locations, where M and N are the total number of
users and locations, respectively. In our work, the categories
of locations are also considered. We denote C ¼ fc1; c2; . . . ;
cKg as the categories of all the locations, where K is the total
number of categories. Obviously, different locations can
belong to the same categories. Therefore, the number of cat-
egories is smaller than the locations. For each user, we
define the check-in sequence as follows.

Definition 3.1 (check-in sequence). The check-in sequence
for a user u 2 U with n records is a time-ordered sequence
Qu ¼ fqu1 ; qu2 ; � � � ; qung. Each record qui 2 Qu contains three
attributes ðli; ci; tiÞ, where ti is the timestamp;li 2 L is the loca-
tion visited by user u at time ti; ci 2 C is the category of li.

Definition 3.2 (long-term sequence). In this paper, we uti-
lize the data in training set to represent the long-term sequence
for a user u, which is regarded as prior information of each
user. We set the long-term sequence as Lu ¼ fqu1 ; qu2 ; � � � ; quLg.

Definition 3.3 (short-term sequence). Given the raw
sequence Qu of user u, we split it into a set of sequences as
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short-term sequences. Suppose the length of short-term
sequence is k, we set the short-term sequence as Su ¼ fqu1 ;
qu2 ; . . . ; q

u
Sg.

Formally, given the historical check-in sequence Qu ¼
fqu1 ; qu2 ; . . . ; qung and the next check-in time tnþ1 of a user u,
our goal is to recommend the next location lnþ1 from the can-
didate location set L. In order to achieve our task, we learn
the user’s long-term preference from the long-term sequence
Lu ¼ fqu1 ; qu2 ; . . . ; quLg and the short-term preference from the
short-term sequence Su ¼ fqu1 ; qu2 ; . . . ; quSg. Then we fuse
them together to capture the preference for next location.

4 OUR MODEL

In this section, we introduce our PLSPL model. Our model
characterizes the long-term and short-term preference of
users and fuse them into a unified framework. We first pres-
ent the overall architecture of our model. Then we describe
each part in detail in the following sections. At last, we give
the objective function and the training algorithm of our
approach.

4.1 The Overall Architecture

The illustration of the overall framework is shown in Fig. 2.
The basic idea of our approach is to recommend a ranked
list of POIs for users by jointly learning the long and short-
term preferences. More specifically, we learn the long-term
preference of user u from the long-term sequence Lu ¼
fqu1 ; qu2 ; . . . ; quLg. The check-in POIs reflect the general taste of
users. And the same POIs may have different impacts for
different users. Thus we use the attention mechanism to
learn the long-term preference of users similar to [56].
Firstly, we learn the latent vectors for user u and the POI qi
(which contain the location li, category ci and the timestamp
ti) in the embedding layer. Then we compute the impor-
tance ai of each POI qi in the long-term sequence. Finally,
we integrate the embedding of POIs to represent the long-

term preference of users. Then the preference vector is fed
into a fully connected layer to calculate the probability of
next POI.

Meanwhile, we utilize the short-term sequence Su ¼ fqu1 ;
qu2 ; . . . ; q

u
Sg of user u to capture the short-term inference of

users’ activity patterns. In the short-term sequence, every
factor ðli; ci; tiÞ of each record is essential to infer users’
intensions and preferences. Specially, the locations and cate-
gories have different influence on user’s preferences at a
certain time. Thus, we feed them into two models respec-
tively to learn the location-level and the category-level pref-
erences. Firstly, we learn the latent vectors for user u,
locations li and categories ci and timestamps ti in the
embedding layer. To better understand users’ check-in
behaviors, we separately feed the concatenated embeddings
of ðu; li; tiÞ and ðu; ci; tiÞ into two LSTM models. Then the
fully connected layers are used to calculate the probability
of next POI.

Finally, in the output layer, we combine the outputs of
the long and short-term together to generate the final proba-
bilities of candidate POIs in the location set L. Specially, to
learn the personized preference, we learn the weighted vec-
tors for every user to balance the importance of the long-
term, location-level and category-level preferences.

4.2 The Long-Term Preference Learning

In this section, we introduce the learning method for long-
term preferences of users. The long-term sequence Lu ¼
fqu1 ; qu2 ; . . . ; quLg of a user u reflects the general taste of the
check-in behavior of user, thus we utilize it to learn the
long-term preference. The main idea is to capture the differ-
ent preferences of each POI in long-term sequence for every
user. In this paper, we apply attention mechanism by simi-
larity computation between the latent vectors of user u and
POIs to learn the importance of each POI. To learn the latent
vector of each POI qui 2 Lu, different with [56] which only
consider the location ID, we also consider the contextual
information, such as the location ID li, the category ci and

Fig. 2. The overall architecture of PLSPL model.
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the check-in time ti. Then the importance of each POI is cal-
culated with attention mechanism. The long-term preference
of user u is designed as the weighted summarization of the
corresponding concatenated vectors of POIs in long-term
sequence. The details of each part are shown as follows.

4.2.1 The Embedding Layer

For the long-term check-in sequence of user u Lu ¼ fqu1 ;
qu2 ; . . . ; q

u
Lg, we learn the latent feature of user u and the con-

textual feature ðli; ci; tiÞ of every record qui 2 Lu. For each
timestamp ti, the original information is continuous, which
is difficult to embed. Therefore, we map the raw timestamps
into discrete hours. Then each hour is represented as a one-
hot 24-dimensional vector, where the non-zero entry denotes
the index for the hour. Similarly, the user ID u, location li and
category ci are also represented as one-hot vectors, where
the non-zero entry denotes the indexes. Intuitively, the spar-
sity increases with the number of the users, locations, catego-
ries and time, which will degrade the recommendation
efficiency. Therefore, we transform them into Du, Dl, Dc, Dt

dimensional dense vectors, respectively.
To learn the high-level representations of the POIs in

long-term sequence of each user, we utilize the nonlinear
transformation to capture the latent vector for each POI. Dif-
ferent with [56] which only learn the latent vectors of POI
ID, we further consider the context information such as the
category of POI and the check-in time. The fused feature of
each POI is calculated as follows:

hi ¼ fðWlv
l
i þWcv

c
i þWtv

t
i þ bÞ: (1)

where vli, v
c
i and vti represent the embedding vectors of the

tuple ðli; ci; tiÞ of every POI qui 2 Qu in the long-term
sequence Lu. Wl, Wc, Wt and b are the weights and corre-
sponding bias parameters. f is the nonlinear activation
function.

4.2.2 The Attention Mechanism

To learn the long-term preferences of users, we leverage the
attention mechanism to calculate the summarization of the
contextual features of POIs in long-term sequence. We use
the embeddings of users learned by embedding layer to
measure the similarity between users’ preference and the
latent vectors of check-in POIs. It is to calculate the impor-
tance of each POI for each user. In this way, we can learn
users’ long-term preference by fusing the latent vectors of
POIs with different weights. Here, the importance of each
POI is calculated as the normalized similarity between
latent vector of the user u and the POI qi:

ai ¼ expðuThiÞP
i expðuThiÞ ; (2Þ

ulong ¼
X
i

aj½vli; vci ; vti�: (3Þ

where ½vli; vci ; vti� represents the concatenation of the embed-
ding vectors of the tuple ðli; ci; tiÞ of each POI. ai denotes the
importance of each POI. ulong is the final representation of the
long-term preference of user u. Then ulong is fed into a fully
connected layer to calculate the probability of next POI Pi

L.

4.3 The Short-Term Preference Learning

We leverage LSTMmodel to learn the short-term preferences
of users. The input sequences contain user ID, location, cate-
gory and time information. We first learn the latent embed-
ding vectors of them before modeling sequential preference.
Considering that the location and category have different
influences on the decisions of users, we feed them into two
LSTMmodelswithout weights sharing. The details of embed-
ding and LSTM layer are introduced in following parts.

Firstly, for the check-in sequence of user u Su ¼ fqu1 ;
qu2 ; . . . ; q

u
Sg, the latent vectors of user u and the tuple

ðli; ci; tiÞ of every record qui 2 Su are represented in the same
way as the Section 4.2.1.

To better learn the short-term preference of different
users, we combine the embeddings of users and time as
context information for location-level and category-level
sequence. With the context information, the latent vector of
the same POI will be different and personalized for different
users. Then the combined vectors of locations ðu; li; tiÞ and
categories ðu; ci; tiÞ are simultaneously fed into two LSTM
models to learn the location-level and category-level prefer-
ences. By taking the location-level sequence as examples,
we model user preference by the basic LSTM as follows:

xt¼ ½vu;vl;vt�
it ¼ sðWi½ht�1; xt� þ biÞ;
ft ¼ sðWf ½ht�1; xt� þ bfÞ;
ect ¼ tanhðWc½ht�1; xt� þ bcÞ;
ct ¼ ft � ct�1 þ it � ect;
ot ¼ sðWo½ht�1; xt� þ boÞ;
ht ¼ ot � tanhðctÞ:

(4)

where xt represents the input vector. ½vu;vl;vt� denotes the
concatenation of the embeddings of users, locations and
time. it, ft, ot represent the input, forget and the output gate
of step t, which deciding what information we’re going to
store, forget, and output, respectively. ect denotes the new
candidate state vector of step t. � is element-wise product
of two vectors. ft � ct�1 represents the retaining information
obtained from the old state after forgetting the information
of the old state ct�1 that we decide to forget. it � ect repre-
sents the adding new information obtained from the new
state ect that we decide to store.

ct is the final state vector that combining the information
of the old state ct�1 and new state ect. ht is the hidden output
vector that represents the preferences of users. s is a sig-
moid layer which outputs a number between 0 and 1. Wi,
Wf , Wo and Wc are the weights of gates. bi, bf , bo and bc are
corresponding biases.

Then the output vectors of the two LSTM models are fed
into a fully connected layer to calculate the probability of
next POI Pi

l and Pi
c .

4.4 User-Based Linear Combination Unit

In real life, when deciding where to go, different users show
different dependencies on long- and short-term preferences.
However, many researchers in the literatures always neglect
the important factor. To learn the different dependencies for
different users, we integrate the results of long- and short-
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term preference learning modules with user-based linear
combination unit in the output layer. Specifically, to learn
the personized preferences for different users, we learn the
personized weights over long- and short-term modules for
different users. The user preferences here are different from
the preferences in the long-term and short-term modules.
They represent the personalized weights on the long- and
short-term preferences. We compute the probabilities of
next POI by linear combination of Pi

L, P
i
l and Pi

c as follows:

Pi ¼ au � Pi
L þ bu � Pi

l þ gu � Pi
c ; (5)

where Pi
L represents the output probability for next POI

obtained from the long-term preference learning. Pi
l and Pi

c

are the outputs of the location-based LSTM and category-
based LSTM, respectively. au;bu; gu are the specific weights
for user uwhich will be learned by our model. The final out-
put probability of POI i is determined as follows:

Oi ¼ epiPN
j¼1 e

pj
: (6)

where N is the total number of candidate POIs. e is the expo-
nential function.

4.5 Model Optimization

So far, we have introduced our solutions to capture users’
preferences in different level. Given a training set with <
samples, the loss function of the proposed model is defined
as follows:

J ¼ � 1

<
X<
i¼1

XN
j¼1

yij � log ðOijÞ þ � Qk k2: (7)

where J is the cross-entropy loss between the recommenda-
tions of our model and the ground truth. < and N represent
the numbers of the training set and the candidate POIs,
respectively. yij is an indicator variable representingwhether
the item is the ground truth. Its value is 1 when the POI j is
the ground truth, otherwise it is 0.Oij is the output probabil-
ity for POI j computed by our model. kQk2 is the regulariza-
tion term to avoid overfitting. � controls the importance of
regularization term. To minimize the object function, we use
Stochastic Gradient Descent (SGD) and the Back Propagation
Through Time (BPTT) algorithm to learn the parameters. The
detailed learning algorithm is presented in Algorithm 1. The
inputs of our model are the

long-term sequence Lu ¼ fqu1 ; qu2 ; � � � ; quLg and the short-
term sequence of users Su ¼ fqu1 ; qu2 ; � � � ; quSg. Firstly, we
compute the latent vectors of user, location, category and
timestamp via the embedding layer. Then the long-term
preference is obtained according to equations (1)� (3) based
on the long-term sequence Lu. Thus, the probability of next
POI Pi

L is computed. After that, the short-term preference is
calculated according to equation (4) based on the short-term
sequence Su

i . Then the probabilities of next POI Pi
l and Pi

c

are computed by the location-level and category-level pref-
erence learning modules. At last, the final probability of
POI i is obtained by fusing the outputs of long- and short-
term modules according to (5) � (6).

Algorithm 1

Input: The long-term sequence Lu ¼ fqu1 ; qu2 ; � � � ; quLg and the
short-term sequence Su ¼ fqu1 ; qu2 ; � � � ; quSg of users

Output: Trained Model.
Shuffle all the sequences
Initialize the parameters Q
Repeat

1 for each input sequence do
2 Compute long-term preference ulong according to

equations (1) � (3)
3 Compute the probability of next POI Pi

L

4 Compute the short-term preference according to
equation (4)

5 Compute the probability of next POI Pi
l and Pi

c

6 Compute the final output Oi according to (5)-(6)
7 Update Qwith gradient descent according to (7)
Until convergence

8 Output trained model

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the per-
formance of our proposed model PLSPL on two real-world
datasets from Foursquare check-in data. We briefly intro-
duce the datasets firstly and then we evaluate the proposed
model with the related methods mentioned before. Further-
more, we give some discussions about our proposed model.
At last, we show the user study to explain the fusion
weights of long- and short-term modules.

5.1 Datasets

We evaluate our model on public Foursquare check-in
datasets collected from New York City (NYC) and Tokyo
(TKY) [1], which have been widely used in many related
research papers. The check-in records are collected from
April 2012 to February 2013. Each record contains user ID,
POI ID, category name, GPS and timestamp. In following
experiments, for each user, we set the records in chrono-
logical order based on the timestamp of each record. We
split the records into several sessions keeping each session
as the same length. Then we take the first 80 percent%
check-ins as the training set, the latter 20 percent% as the
test set. After data preprocessing, the overall statistics is
shown in Table 1.

5.2 Baselines

Several baselines and state-of-the-art methods on next POI
recommendation are used for comparison.

MF [14] modeled the latent vectors of users and items by
Matrix Factorization.

FPMC [29] modeled both general taste and sequential
behavior by integrating Matrix Factorization and Markov
Chain method.

ST-RNN [10] modeled temporal and spatial contexts in
recurrent neural network with time-specific and distance-
specific transition matrices.

LSTM [27] applied recurrent neural network to learn
users’ sequential behaviors based on the check-in location
sequences.
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SHAN [56] applied a nonlinear two-layer hierarchical
attention network to capture users’ dynamic preferences
including long-term preference and short-term preference.

DeepMove [57] learned user preference using recurrent
neural networks for historical sequence and current
sequence. Specially, an attention mechanism is used to com-
pute the similarity of current state and historical states.

MCARNN [54] learned the spatial-activity topics as the
latent factor to capture both users’ activity and location
preferences. Besides, they proposed a novel Context Aware
Recurrent Unit (CARU) to integrate the sequential depen-
dency and temporal regularity of spatial activity topics.

5.3 Evaluation Metrics

In this paper, we use recall@k (R@k) and MAP@k to evalu-
ate the performance of different methods. They are standard
metrics for evaluating the quality of the ranked lists. The
larger the value, the better the performance. For each user,
R@k indicates that whether the ground truth POI appears in
the top-k recommended POIs and MAP@k measures the
order of our recommendation list. We use the two metrics
because we want the recommended item to appear not only
in the top K lists, but also at the top of the recommended
list. We set k ¼ 1, 5, 10, 20 in our experiments. Given a train-
ing set with < samples, the functions of the two metrics are
defined as follows:

R@k ¼ 1

<
X
i2<

Si
rec \ Si

visited

�� ��
Si
visited

�� �� ; (8Þ

MAP@k ¼ 1

<
X
i2<

Si
rec \ Si

visited

�� ��
position

: (9Þ

where Si
rec indicates the top-k recommended POIs. Si

visited

indicates the ground truth POI visited by users. In our next
POI recommendation task, the number of Si

visited is 1. The
position in MAP@k represents the position of the correctly
recommended POI in the ranked list.

5.4 Parameter Setting

The key parameters in our model include: the embedding
dimensions of latent vectors for users Du, locations Dl, cate-
gories Dc and time Dt, the dimension of the hidden state
and the batch size. Considering the vocabulary size of them
on both datasets, we set the dimensions of locations and cat-
egories on NYC to be Dl ¼ 300, Dc ¼ 100 and Dl ¼ 350, Dc ¼
120 respectively. We set the dimensions of users and time to
be Du ¼ 50, and Dt ¼ 20 respectively. The batch size was set
to be 32, and the learning rate is set to be 0.001. The length
of the short-term sequence is 20.

5.5 Performance Comparison

In this sub-section, we compare the performance of our
model with other methods. The performance of all methods
evaluated by R@k and MAP@k in NYC and TKY datasets is
illustrated in Table 2. We can observe that:

1) Our model PLSPL outperforms the compared meth-
ods under all the metrics on the two datasets. Con-
cretely, for R@k on the NYC dataset, our method is
almost 12%-26 percent% higher than MF, 5%-10
percent% higher than FPMC, 1%-24 percent% higher
than SHAN, 4%-12 percent% higher than LSTM, 4%-
15 percent% higher than ST-RNN, 1.5%-4.2 percent%
higher than DeepMove and 0.8%-5.8 percent%
higher than MCARNN. For MAP@20, our method
outperforms MF, FPMC, SHAN, LSTM, ST-RNN,
DeepMove and MCARNN by 17.03%, 8.19%, 7.57%,
5.84%, 6.66%, 2.01% and 1.87 percent% respectively.
On the TKY dataset, our method is also higher
than other methods under all metrics. This indicates
that our model can better capture users’ long- and
short-term preferences. Meanwhile, it also demon-
strates the effectiveness of considering the contextual

TABLE 1
Datasets Statistics

#user #location #category #session

NYC 1,083 38,333 398 11,415
TKY 2,293 61,858 385 28,727

TABLE 2
Performance Comparison With Baselines

Datasets Methods R@1 R@5 R@10 R@20 MAP@5 MAP@10 MAP@20

NYC

MF 0.0332 0.0859 0.1348 0.2013 0.0518 0.0571 0.0599
FPMC 0.0892 0.2262 0.2943 0.3895 0.1363 0.1451 0.1483
ST-RNN 0.1103 0.2171 0.2580 0.2882 0.1471 0.1614 0.1636
LSTM 0.1147 0.2424 0.2916 0.3249 0.1629 0.1695 0.1718
SHAN 0.1353 0.1779 0.1896 0.2019 0.1510 0.1526 0.1545

DeepMove 0.1408 0.2946 0.3630 0.4052 0.1975 0.2071 0.2101
MCARNN 0.1477 0.2909 0.3510 0.3894 0.2005 0.2088 0.2115

PLSPL (ours) 0.1559 0.3252 0.3953 0.4475 0.2172 0.2266 0.2302

TKY

MF 0.0174 0.0550 0.0837 0.1439 0.0302 0.0335 0.0362
FPMC 0.0655 0.1725 0.2385 0.2944 0.1057 0.1131 0.1128
ST-RNN 0.1204 0.2437 0.2927 0.3421 0.1667 0.1733 0.1767
LSTM 0.1339 0.2737 0.3295 0.3780 0.1868 0.1942 0.1975
SHAN 0.1084 0.1527 0.1684 0.1813 0.1266 0.1287 0.1296

DeepMove 0.1282 0.2488 0.2923 0.3289 0.1735 0.1794 0.1820
MCARNN 0.1490 0.3128 0.3723 0.4292 0.2093 0.2174 0.2214

PLSPL (ours) 0.1571 0.3321 0.4020 0.4664 0.2212 0.2307 0.2352
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information and personalized dependencies on dif-
ferent parts for different users.

2) SHAN shows an increase compared with MF and
FPMC under R@1 and all MAP@k on the NYC data-
set. That’s because FPMC combines the matrix factor-
ization and Markov chain in linear way. However,
SHAN utilizes nonlinear model to better learn the
user-item interaction.

3) LSTM shows better performance than FPMC, ST-
RNN and SHAN on many metrics on both datasets.
That’s because LSTM can better model sequential
data than Markov Chain and RNN. Meanwhile, it
demonstrates that the sequential information plays a
very important role in next POI recommendation task.

4) DeepMove shows better performance on all the met-
rics than FPMC, ST-RNN, SHAN and LSTM on NYC
dataset. That’s because DeepMove applies LSTM to
model both long- and short-term preferences. More-
over, it leverages attention mechanism to learn the
attention weights between recent states and history
states. However, it shows slightly poor performance
than LSTM on TKY dataset. This phenomenon can
be explained that the average number of check-in
records in TKY dataset is larger than NYC. This will
lead to a particularly long historical data, which is
difficult for DeepMove to better capture history
information.

5) The performance of MCARNN is better than the
other baselines on the two datasets. That’s because
MCARNN integrates the temporal and sequential
contexts dynamically. This model learns the weights
of the sequential and the temporal context to capture
the effect of the timespan between the target check-
in time and the last time. Besides, they learn users’
activity and location preferences by multi-task learn-
ing. In this way, they can better capture the latent
factor by the shared CARU layer. However, the
MCARNN shows worse performance compared
with our method. That’s because the MCARNN
ignores the long-term preference of users. And the
category information is regarded as a side informa-
tion. The latent vectors of the category, the location
and user are combined linearly to learn the sequen-
tial pattern. Compared with MCARNN, our method
considers the long-term and short-term preferences
of users. For short-term module, we learn the loca-
tion-level and category-level preferences by two par-
allel LSTM models to capture sequential behaviors.
Specially, we also learn different weights for the
long- and short-term modules for different users to
better learn users’ personized preferences.

5.6 Discussions

In addition to the performance comparison of the proposed
model with the existing MF, FPMC, ST-RNN, LSTM, SHAN,
DeepMove and MCARNN, we also discuss some variant
models to demonstrate the importance of each part of our
model. We discuss six aspects in our experiments: (1) the
impact of integration of long- and short-term modules; (2)
the impact of factors in long-term module; (3) the impact of
factors in short-termmodule; (4) the impact of the number of

users’ historical records; (5) the impact the number of users’
current records; (6) the impact of the dimensions of locations
and categories.

5.6.1 The Impact of Integration of Long- and Short-

Term Modules

To demonstrate the impact of integration of long- and short-
term modules in our model, we perform experiments with
variant models as follows:

1) long: variant model with only the long-term prefer-
ence learning module.

2) short: variant model with only the short-term prefer-
ence learning module.

3) longþshort: variant model with long- and short-term
preference learning module. Here we learn the same
weights on the two parts for all users.

4) longþshortþattn (PLSPL): our PLSPL model consid-
ering both long- and short-term modules with user-
based linear combination unit.

Due to space limitation, we just investigate the perfor-
mance under R@1 and R@5 on NYC dataset. We show the
performance of different factors under R@1 and R@5 on the
two datasets in Fig. 3. We can observe that compared with
long-term preference learning, the short-term behavior
shows better performance. We suppose that the long-term
preference reflects the inherent characters of users which are
difficult to represent essentially. While the short-term prefer-
ence can be learned by sequential information of recent
behaviors. Besides, the integration of long- and short-term
preference learning modules shows better performance than
any single part under all metrics. It indicates that integrating
users’ general taste and recent interest is crucial to better
learn and understand user’s check-in behavior.

Specially, our PLSPL model (longþshortþattn) outper-
forms all the variant models. It demonstrates the effective-
ness of user-based linear combination unit learning
different dependencies of long- and short-term modules. To
intuitively interpret the user-based linear combination unit,
we compare the proportion of the weights in long- and
short-term preference for all the users in NYC and TKY
datasets. As shown in Fig. 4, in NYC datasets, 41 percent%
users depend more on long-term preference, and 59
percent% users depend more on short-term preference. In
TKY datasets, 48 percent% users depend more on long-term
preference, and 52 percent% users depend more on short-
term preference. We also give the user study in the follow-
ing Section 5.7.

Fig. 3. Discussions on the impact of integration of long- and short-term
modules.
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5.6.2 The Impact of Factors in Long-Term Module

To better capture the long-term preference of users, we con-
sider the category and check-in time of each location in
long-term sequence. In this sub-section, we discuss the
impacts of the two contextual factors in long-term module.
We perform experiments for variant models with only long-
term module as follows:

1) loc: variant model only considering the latent vectors
of locations.

2) locþcate: variant model further considering the cate-
gories of locations.

3) locþcateþtime: the variant model considering the
locations, categories and the check-in time.

The performance of different variant models is shown in
Fig. 5. We can see that the variant models with contextual
factors perform better than the model with only the location
information. Moreover, locþcateþtime model shows the best
performance and has a more significant improvement than
locþcate. It indicates that contextual information is helpful
to understand and capture users’ long-term preferences.

5.6.3 The Impact of the Factors in Short-Term Module

In short-term module, we apply two LSTM models to learn
users’ location- and category-level preferences. For each
model, we also consider the latent vectors of users and
check-in time to better learn users’ sequential preferences.
Besides, we leverage user-based linear combination unit to
learn different dependencies on the two sub-modules. Here,
we discuss the impact of different factors for variant models
with only short-term module as follows:

1) loc: denotes the variant model considering the
location-level preference and the latent vectors of
locations.

2) cate: denotes the variant model considering the cate-
gory-level preference and the latent vectors of
categories.

3) context: denotes the variant model considering the
latent vectors of users and check-in time.

4) attn: denotes the variant model considering the user-
based linear combination unit.

5) concate: denotes the variant model with the concate-
nation of the location, category and the context infor-
mation as the input of LSTM.

6) “þ” denotes we take another factor into consider-
ation. For example, loc þ cate denotes the variant
model considering the location-level and category-
level preferences.

The performance of different factors is shown in Fig. 6.
We can see that the integration of location- and category-
level preference shows better performance than any single
one. Moreover, the model considering contextual informa-
tion plays an important role in improving the performance.
It also demonstrates the effectiveness of the contextual
information. Besides, the model with user-based linear com-
bination unit shows the best performance. It indicates that
considering different dependencies on location- and cate-
gory-level preferences is helpful for models with only short-
term module.

In addition, to further demonstrate the effectiveness of
location-level and category-level preference learning, we
compare our PLSPL method with another variant model
which sets the concatenation features of location and cate-
gory as inputs in short-term module. From Fig. 7 we can see
that the performance of concatenation is worse than our
proposed method. Once again, we demonstrate that the
location-based sequence and the category-based sequence
bring different information for understanding users’ short-
term preferences.

5.6.4 The Impact of the Number of Users’ Records

In order to show the impact of the number of users’ records,
we divide the test dataset into four groups according to the
number of check-in records on NYC dataset as shown in

Fig. 4. The proportion of different parts on two datasets.

Fig. 5. Discussions on the impact of contextual factors.

Fig. 6. Discussions on the impact of factors in short-term module.

Fig. 7. Discussions on the impact of location-level and category-level
preference learning.
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Table 3. Because the minimum number of users’ records is
100, we divide the users starting from 100. The “100-150”
means the number of records between 100 and 150. ‘500þ’
means the number of records more than 500. We can observe
that the check-in number of most of the users is 100�300.
The performance of R@1 and R@5 for each group is shown in
Fig. 8. We can see that when the number of check-in records
is less than 300, the performance will be better alongwith the
increase of the check-in number. However, when the number
is larger than 300, the performance is decreased. This phe-
nomenon can be interpreted that when the number of users’
records is very large, the long-term sequences of users will
also be longer. Thus, the general tastes of users will be more
complicated and elusive, leading it difficult to better capture
users’ long-term preferences.

5.6.5 The Impact of the Number of Users’ Short-Term

Records

In our former experiments, we split users’ records into many
sub-sequences with 20 records as short-term sequence. To
show the impact of the number of users’ short-term records,
we investigate the performance of test datasets under differ-
ent lengths. Here we set the lengths of short-term sequences
to be 1�19 with interval to be 1. To further demonstrate the
effectiveness of our method, we compare the performance
of our model with DeepMove. The results under R@1 and
R@5 on NYC dataset are shown in Fig. 9. We can observe
that when the number of short-term records is small, our
model can still achieve considerable results. Besides, as the
number increases, the performance of our model under
R@1 is significantly getting better. However, the improve-
ment of DeepMove is not so obvious. For R@5, our method
outperforms DeepMove on all numbers of users’ short-
term records.

5.6.6 The Impact of the Dimensions of Locations and

Categories

The dimensions of latent vectors for POIs, categories and
users are the most important parameters in our model. Due
to space limitation, we just investigate the performance with
respect to R@1 on NYC and TKY datasets. For each

parameter, we perform experiments with the others fixed on
both datasets. Considering the total number of POIs, catego-
ries and users, we set the embedding dimensions of POIs and
categories to be 150�500, 40�200 and 20�80, respectively.

The results are shown in Fig. 10. We can see that when the
embedding size is too large or too small, the performance is
not so good. The model performs best when the embedding
size of POIs is 300 and 350 for the two datasets respectively.
That’s because the total number of POIs are not the same for
the two datasets. And we can observe that high dimensions
perform better that low dimensions, that’s because high
dimensions can better capture the characters of POIs. For the
embedding size of categories, the best one is 100 and 120 for
the two datasets. For the embedding size of users, the best
one is 50 for the two datasets.

TABLE 3
The Number of User’s Records on NYC Dateset

Numbers 100-150 151-200 201-300 300þ
User count 518 243 154 157

Fig. 9. Discussion on the impact of the number of users’ short-term
records.

Fig. 8. Discussions on the impact of users’ records.
Fig. 10. The R@1 under different dimensions of (a) locations (b) catego-
ries and (c) users.

1954 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 06,2022 at 12:42:10 UTC from IEEE Xplore.  Restrictions apply. 



5.7 User Study

To explain the weights of the long and short term preference
to the final decision, we randomly select one user from our
dataset. The user ID of the selected user is “2”. We recom-
mend the next POI at 15:54 on Jan10, 2013. Our model inte-
grates the long- and short-term preferences of the user. And
the weights computed by our model are 0.63 and 0.37 for
long- and short-term module. It indicates that the user
shows more dependence on the long-term check-in histo-
ries. To intuitively interpret the meaning of the output
weights, we select one sequence from his/her testing data
as short-term sequence. As shown in Fig. 11c, the target
time of next POI is 15: 54.pm. Considering the time shift, we
find the possible POIs From the short-term sequence at
14:00�16:00. From the black dashed arrows, we can observe
that the user may check-in at 3819 (Department Store),
24537 (Gym/Fitness Center), 12569 (Subway). However,
from the analysis of the short-term sequence, we are not
sure which one he/she will visit at next time. From the fre-
quency analysis of the long-term items in Figs. 11a and 10b,
we can observe that the user mainly visits the Clothing
Store, Gym/Fitness Center and Department Store at
14:00�16:00. And the most frequent POI is 24537, which is
belonging to the Gym/Fitness Center. Besides, the weights
for long- and short-term modules computed by our model
indicate that the user shows more dependence on the long-
term module. Therefore, our model recommend the 24537
(Gym/Fitness Center) for the next POI, which is in line with
the ground truth.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a unified model jointly learning
users’ long- and short-term preferences for next POI recom-
mendation problem. And we specially learn personalized

weights over different parts. In long-termmodule, we charac-
terize contextual features of POIs and capture the long-term
preference via attention mechanism. In short-term module,
we learn the location-level preference and category-level pref-
erence by two parallel LSTM models. From the experiments,
we observe that our model outperforms the state-of-the-art
methods on real-world datasets in terms of recall and MAP.
Besides, we demonstrate the importance of each part of our
model according to the variant models. In future work, we
will incorporate more context information such as the social
network and spatial information into the model to further
improve the next POI recommendation performance.
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