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Abstract—Top-k recommendation is a fundamental task in
recommendation systems that is generally learned by comparing
positive and negative pairs. The contrastive loss (CL) is the key
in contrastive learning that has recently received more attention,
and we find that it is well suited for top-k recommendations.
However, CL is problematic because it treats the importance of
the positive and negative samples the same . On the one hand, CL
faces the imbalance problem of one positive sample and many
negative samples. On the other hand, there are so few positive
items in sparser datasets that their importance should be em-
phasized. Moreover, the other important issue is that the sparse
positive items are still not sufficiently utilized in recommenda-
tions. Consequently, we propose a new data augmentation method
by using multiple positive items (or samples) simultaneously with
the CL loss function. Therefore, we propose a multisample-based
contrastive loss (MSCL) function that solves the two problems
by balancing the importance of positive and negative samples
and data augmentation. Based on the graph convolution network
(GCN) method, experimental results demonstrate the state-of-
the-art performance of MSCL. The proposed MSCL is simple
and can be applied in many methods. Our code is available at
https://github.com/haotangxjtu/MSCL.

Index Terms—contrastive loss, recommendation system, data
augmentation, graph convolution network

I. INTRODUCTION

Recommendation systems have become an important re-
search field that aims to solve the information overload
problem in the information explosion era. Recommendation
systems are widely used in many fields, such as e-commerce
[1], [2], life services [3]–[5], social networks [6], [7], and en-
tertainment [8], [9], and they have become one of the important
technologies in the information age. Top-k recommendation is
the basic problem of recommendation systems that learns the
users’ preferences through their historical interaction records.
Then, it recommends the top-k items to the users that they
may like.
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Fig. 1. We propose a multisample-based contrastive loss (MSCL) that
distinguishes the importance of positive and negative samples and makes better
use of sparse positive samples by a new data augmentation method.

Deep learning-based top-k recommendation algorithms sig-
nificantly improve recommendation performance and have
become the mainstream research direction in recent years,
especially collaborative filtering-based methods. These exist-
ing algorithms extract advanced semantic features and per-
form complex feature interactions by employing MLP [10],
CNN [11], RNN [12], attention mechanisms [13], [14], etc.
The user-item interaction is naturally viewed as a bipartite
graph. Graph convolutional network (GCN)-based methods are
increasingly integrated with recommendation systems [15]–
[17]. For example, a hierarchical user intent graph network
(HUIGN) [16] exhibits user intents in a hierarchical graph
structure from fine-grained to coarse-grained intents. The mul-
timodal graph convolution network (MMGCN) [17] leverages
information interchange between users and items to enhance
user representations and further capture users’ fine-grained
preferences on different modalities. GCN-based methods ag-
gregate features of neighbors as well as higher-order neighbors
to obtain better feature representations of users and items, and
the performance is further improved.

In contrast to the rapid development of recommendation
methods, the loss function has rarely been improved. There
are many loss functions for the recommendation, such as mean
square loss (MSE), cross entropy loss, Bayesian Personalized
Ranking (BPR) [18], and so on. MSE is always used for
rating prediction [19]–[21], and when it comes to the top-
k recommendation, the last two loss functions are usually
used [10], [22], [23]. Cross entropy loss treats the top-k task
as a classification problem while BPR treats it as a ranking
problem which encourages the ranking of positive items above
negative items for the given user. BPR is more suitable for the
top-k recommendation, so it becomes the most popular and
widely used loss function. Recently, the contrastive loss (CL)
function has yielded excellent results in several fields under the
contrastive learning framework [24]–[29]. CL directly treats
nonpositive items within the same training batch as negative
samples, while BPR uses one or several negative samples with
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additional sampling time. Thus, CL can obtain a large number
of negative samples simply and quickly. They all learn through
a contrastive process, so BPR loss can also be seen as a kind
of contrastive loss.

However, the importance of positive and negative samples
should be treated differently by CL. (1) CL uses one positive
sample and N -1 negative samples, where N is the batch size,
typically 1024, 2048, etc. Thus, the imbalance problem or
different importance values of one positive sample and nega-
tive samples should be addressed. Contrastive learning often
adopts the contrastive loss function for optimization which also
suffers from this problem. (2) The number of positive samples
is very small; thus, recommendation systems face the sparsity
problem. Intuitively, the sparser the dataset, the fewer positive
samples, and the more important the positive samples should
be relative to many negative samples. Therefore, positive and
negative samples should be treated differently for the above
two reasons. As large negative samples can help the model to
learn discriminative features, we solve this problem based on
this. It is this distinction that allows the roles of positive and
negative samples to be appropriately adjusted and makes them
work better collaboratively.

Another issue we are concerned about is the insufficient use
of positive samples in top-k recommendations. As mentioned
before, there are very limited positive items of each user in the
recommendation system. How to make full use of the existing
positive samples is a key problem. Data augmentation methods
help to solve this problem. Data augmentation methods in rec-
ommendation systems are generally based on graph structures,
such as edge or node dropout, masking features, and random
walks. The potential of the combined use of positive samples
is not exploited.

To solve the above problems, we propose a new CL-based
loss function, and the basic idea is shown in Fig. 1. For the first
problem, we distinguished their different importance values by
adjusting the weights of positive and negative samples. The
hyperparameter α is the weight of the positive samples, which
represents their importance. To make better use of positive
items, we propose a new data augmentation method by using
multiple positive samples simultaneously. This data augmen-
tation makes better use of positive samples and the training
space can be expanded because of different combinations
of multiple positive samples. In the original situations, the
number of items the user has interacted with can be interpreted
as the number of cases the user can encounter. By a random
combination of multiple items, the user can encounter more
cases, thus expanding the training space. Moreover, this data
augmentation can be used for many other types of data, not
just graph data.

In summary, we propose a contrastive loss function based
on multiple (positive and negative) samples, which is named
multisample-based contrastive loss (MSCL). The proposed
loss function can significantly improve the performance and
the training efficiency of the top-k recommendation with
almost no increase in complexity. As shown in this paper,
MSCL can be widely used for recommendations in various
fields, such as Yelp’s restaurant recommendations, Amazon’s
book recommendations, Alibaba’s fashion recommendations.

And MSCL makes basic method MF more competitive and is
suitable for industrial applications at a large scale. The main
contributions of this paper are summarized as follows:

• We propose a simple but effective loss function, MSCL,
which improves the contrastive loss to make it suitable
for the recommendation system. MSCL can be applied to
many recommendation methods and is much better than
the traditional BPR loss.

• The MSCL function distinguishes the importance of
positive and negative samples by weighting. It helps to
address the imbalance problem of positive and negative
samples and to enhance the importance of positive sam-
ples in sparser datasets.

• We propose a new data augmentation method by using
multiple positive samples simultaneously, which makes
better use of the positive samples.

• Experimental results demonstrate state-of-the-art perfor-
mance and many other advantages, such as broad appli-
cability and high training efficiency. MSCL is suitable
for top-k recommendations, and it makes the simple and
basic MF more competitive.

The rest of this paper is organized as follows. In Section II,
related works are briefly reviewed. To verify the effectiveness
of MSCL, we design sLightGCN MSCL, which combines
MSCL with the best baseline as our method in Section III.
Experiments and discussions are described in Section IV.
Section V discusses the advantages of MSCL with more
experiments. Conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we briefly review related works: contrastive
loss and graph data augmentation methods. Differences be-
tween our approach and existing works are also presented.

A. Contrastive Loss (CL)
Contrastive loss has become an excellent tool in unsu-

pervised representation learning. It aims to maximize the
similarities of positive pairs and minimize that of negative
pairs [24], [25], [30]–[32]. CL is widely used for many kinds
of data, such as images, text, audio, graphs, etc. It has been
applied in the field of recommendation [33], [34].

Broadly, functions that use pairwise contrastive learning
processes are contrastive loss functions that have many forms.
BPR and triplet loss are the basic contrast-based and widely
used loss functions. BPR [18] loss aims to maximize the
distance between the positive pair and negative pair, which
is proposed for the ranking task and widely used in top-k
recommendations. Triplet loss [35]–[37] can be used to train
samples with small differences, especially for human faces.
The samples are triplets (anchor, positive, negative). Triplet
loss is calculated by optimizing the distance between the
anchor and positive samples so that it is smaller than the
distance between the anchor and negative samples.

However, they employ limited pairs of samples. Contrastive
loss functions based on multiple pairs of samples are more ef-
ficient and contain multiclass N-pair loss, InfoNCE loss, non-
parametric softmax classifiers, and normalized temperature-
scaled cross entropy loss (NT-Xent loss). Multiclass N-pair
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loss [38] is proposed from a deep metric learning perspective,
which greatly improves the triplet loss by jointly pushing out
multiple negative samples at each update. InfoNCE loss [39]–
[41] is proposed by maximizing a lower bound on mutual in-
formation based on noise-contrasting estimation. The nonpara-
metric softmax classifier [42] is presented by maximizing the
distinction between instances via a novel nonparametric soft-
max formulation in an unsupervised feature learning approach.
They come from different fields and formula derivations but
share a similar form. NT-Xent loss [24], [29] is proposed on
these bases, but with the minor difference that the denominator
does not contain positive samples. All of them are widely used
in contrastive learning frameworks and always obtain state-of-
the-art results.

Contrastive loss has recently been used in recommendation
systems in the contrastive learning framework for recom-
mendations. For example, many works [34], [43], [44] have
been proposed for sequential recommendation, and CLCRec
[45] has been proposed for cold-start recommendation. SGL
[33] was proposed for top-k recommendation, but it did not
improve CL to fit the recommendation field.

B. Graph Data Augmentation

The user-item interaction records in recommendation sys-
tems are naturally viewed as bipartite graphs. Graph-based
data augmentation is widely used and studied in graph con-
trastive learning, which contains both traditional subgraph
sampling methods and recently proposed methods [29], [33],
[46]–[49]. Users and items are inherently linked and dependent
on each other in the user-item bipartite graph. Data augmen-
tation for GCNs is also challenging due to the complex, non-
Euclidean structure of the graph, and few works study the data
augmentation of graphs. Therefore, graph data augmentation
must be tightly integrated with the graph rather than replicating
the methods used in the computer vision and natural language
processing domains.

Graph data augmentation conforms to the basic assumptions
of graph data processing. Node dropping assumes that a miss-
ing edge vertex does not alter semantics. Edge perturbation
is considered to improve the robustness of the semantics
against connectivity changes. Masking node features enhances
semantic robustness by losing some attributes for each node.
Subgraphs assume that local structure can hint at the complete
semantics [29].

Graph augmentation can be divided into two types, feature-
space augmentations and structure-space augmentations: (1)
feature-space augmentations are realized by modifying initial
node features, such as masking features or adding Gaussian
noise, and (2) structure-space augmentations operate on the
graph structure by adding or removing nodes or edges (edge
perturbation), subsampling or subgraphs by random walk, or
generating different views using shortest distances or diffusion
matrices [48].

Recently, Zhu et al. [49] proposed adaptive graph aug-
mentation to design augmentation schemes that tend to keep
important structures and attributes unchanged while perturbing
the unimportant links and features. Zhao et al. [50] utilized

a neural edge predictor to predict likely edges for graph
augmentation to improve node classification performance. For
top-k recommendations, the latest work, SGL [33], uses three
operators on the graph structure, namely, node dropout, edge
dropout and random walk. The experimental results show that
edge dropout performs the best.

C. Differences with Existing Works

Differences with existing CL functions; many works are
done using only the CL function in the contrastive learning
framework. SGL in the recommendation system employs a
multitasking mechanism with joint use of CL and BPR.
Despite some improvements proposed on CL, such as soft
contrastive loss [51] and debiased contrastive loss [52], they
all treat the weights of the positive samples and negative
samples as the same. The problem of imbalanced positive
and negative samples is still not a concern. More importantly,
how to adapt CL to recommendation systems is a new topic
worth investigating, especially to emphasize the importance
of positive samples in sparser datasets. Thus, the proposed
importance-aware CL is different from previous works.

Differences with existing graph data augmentation: Existing
graph data augmentations in recommendation systems are
common methods in the graph field. How to make full use of
the limited positive samples to obtain better results, especially
for the recommendation system, is an important task and
challenge for data augmentation. We randomly sampled a fixed
number within one-hop neighbors that was not the same as
random dropout or a subgraph by random walk on multiple
hops. More importantly, our method is a structure-space-based
augmentation, and traditional structure-space-based methods
generally work in the aggregation process of GCNs. Tradi-
tional augmented data are used one by one under the same loss,
which is a serial approach. We use multiple positive samples
at the same time and combine them explicitly with the loss
function, which is a parallel method for better constraints.

III. METHODOLOGY

We designed a method named sLightGCN MSCL that
combines MSCL with a strong baseline, as shown in Fig.
2, to verify the effectiveness of the proposed loss function.
It should be noted that our approach is model-agnostic and
can be applied to many recommendation system methods. In
this section, we first briefly describe the basic methods of
LightGCN, then focus on the MSCL function, and finally
analyze the time complexity.

A. Basic Method

Recently, graph-related methods have shown excellent per-
formances, which treat user-item interactions as graph struc-
tures and adopt graph convolution networks. Combined with
collaborative filtering, NGCF [22], LR-GCCF [23], LightGCN
[53], etc., are excellent models for top-k recommendation.

LightGCN is a state-of-the-art method and is introduced
here as our main baseline. This model includes only the most
essential component in GCN - neighborhood aggregation - for
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Fig. 2. An illustration of our method. Many models can be used as the encoder, and LightGCN is used here as an example.

collaborative filtering, which is much easier to implement and
train and gains substantial improvements. Then, neighborhood
aggregation is defined as follows:

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i (1)

e
(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u . (2)

where u, i denote the user and the item in the user-item graph,
and e

(k)
u , e

(k)
i denote embeddings of u, i of the k-th layer.

Specifically, k = 0 represents the initialized latent vector;
Nu and Ni represent the set of neighbors of targets u and
i, respectively. The final embeddings of users and items are:

eu =
K∑

k=0

αke
(k)
u (3)

ei =
K∑

k=0

αke
(k)
i (4)

where K is the number of layers; αk denotes the importance
of the k-th layer embedding, and they can be treated as a
hyperparameter to be tuned manually or as a model parameter
to be optimized automatically. Following the original paper
of LightGCN, the mean of embeddings from all layers are
adopted as the final embeddings, that is, αk=1/(K+1).

LightGCN-single, a variant of LightGCN, is also proposed
in the original paper [53], where only the k-th embeddings,
e
(k)
u , e

(k)
i , are used as final embeddings. This equals to tune

αk rather than simply set it as 1/(K+1) uniformly. It has
shown better performance than LightGCN on many datasets.
Therefore, it is selected as a strong baseline in order to get
the best results here and is named sLightGCN for short.

The BPR loss is used for training in LightGCN. We present
it here for comparison with MSCL:

LBPR =
∑

(u,i,j)∈D

− log σ (ŷui − ŷuj) (5)

where D = {(u, i, j), u ∈ U, i, j ∈ I}, U , and I are the set
of users and items, i, j denote positive and negative items,
respectively, σ(·) is the logistic sigmoid function, and ŷui is
the inner product of the user and item, which is the same as
Equation (12).

B. Multisample-based Contrastive Loss

1) The Basic Contrastive Loss: Referring to some recent
works [24], [29], we use NT-Xent as the original contrastive
loss function and then adapt it to the recommendation field.

The NT-Xent is:

L = − log
exp (sim (zi, zj) /τ)∑N

k=1,k ̸=i exp (sim (zi, zk) /τ)
(6)

where sim (zi, zj) = z⊤
i zj/ ∥zi∥ ∥zj∥, and zi and zj indi-

cate the embeddings of sample i, j in a minibatch, N is the
batch size, and τ denotes the temperature parameter. To fit the
recommendation domain, we rewrite it as LCL:

f (u, i) = e⊤u ei/ ∥eu∥ ∥ei∥ (7)

LCL = − 1

N

∑
(u,i)∈D

log
exp (f(u, i+)/τ)∑
i∈I− exp (f(u, i)/τ)

= − 1

N

∑
(u,i)∈D

(
f(u, i+)/τ − log

∑
i∈I−

exp (f(u, i)/τ))
)

(8)

where D = {(u, i), u ∈ U, i ∈ I} is a training batch; U and I
are the sets of users and items, respectively; i+ is the positive
sample of target user u; and I− is the set of negative samples.
f (u, i) is the cosine similarity of the (u, i) pair based on their
embeddings. We follow the sampling strategy used in [24],
[29] in which the other nonpositive samples in the same batch
are seen as negative samples.

2) Importance-aware CL (ICL): In the basic contrastive
loss, the minus sign is preceded by one positive sample,
followed by the sum of N − 1 negative samples, which
results in imbalance problems. In addition, emphasizing the
importance of positive samples on sparser datasets is also
a problem we want to address. These two problems can
be solved together by weighting, an effective and common
practice. The importance of positive and negative samples can
be adjusted, which helps to better backpropagate and make the
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training more effective. We name the modified CL importance-
aware CL:

LICL =− 1

N

∑
(u,i)∈D

(
αf(u, i+)/τ

− (1− α) log
∑
i∈I−

exp (f(u, i)/τ))
)

(9)

where α is a hyperparameter and α ∈ [0, 1].
When α = 0.5, the LICL is the same as LCL. Because

problems in the analysis are inevitable, α = 0.5 is not optimal
in general. When α < 0.5, it means that N -1 negative samples
need more weights and relatively more losses to be optimized.
When α > 0.5, the positive samples need to be given more
attention, which may be because there are too few positive
items for users in the recommendation system. The weighting
method is simple yet effective in adapting to a variety of
datasets.

3) Multiple Positive Sample-based CL (MCL): To address
the problem that positive samples are insufficiently used, we
propose a new data augmentation method that uses multiple
positive samples simultaneously. We propose a multipath-
based method to use multiple positive samples under the
supervision of the CL function. The conventional approach
is to use a random batch of data and a loss function to form a
learning path after the model is computed. We extend this idea
by randomly sampling M positive samples to form M paths.
The target user is optimized by M positive samples. The final
loss is the sum of M loss functions, which is calculated simply
and effectively. Thus, the multiple positive sample-based CL
is:

LMCL =
M∑

m=1

Lm
CL (10)

where M is a hyperparameter, which is the number of used
positive samples.

This data augmentation comes with many benefits. (1) We
keep the same training process of MSCL as the original
one, but the difference is the number of samples used for
each training time. Suppose the user has L positive samples,
there are C1

L (combination formula) possible cases by random
sampling for the user at each training time in the original way.
MSCL uses M positive samples simultaneously for the user, so
there are CM

L possible cases for each training time. Therefore,
the M positive samples greatly increase the cases that users
can encounter. This provides augmentation and better usage of
the existing positive items. (2) Positive and negative samples
form a comparison; thus, the expanded positive samples also
enlarge the comparable cases. (3) Furthermore, we integrate
this augmentation with the loss function explicitly in parallel to
facilitate increasingly better constraints and backpropagation
for the user. (4) This data augmentation method can be widely
applied to graph data as well as various other types of data.

4) Combining ICL and MCL as MSCL: We have elaborated
on our two improvements, ICL and MCL. These two improve-
ments are proposed from different perspectives. Combining
them together can solve the two problems for the top-k
recommendation. In this case, multiple positive samples and
many negative samples are used at the same time. Therefore,

we term it multisample-based contrastive loss, which is defined
as follows:

LMSCL =
M∑

m=1

Lm
ICL (11)

Their combination forms a logic for this paper: using mul-
tiple (positive and negative) samples and solving the problems
that exist in them. The proposed function is simple and
effective. Two hyperparameters are introduced, but they are
easy to tune.

C. Model Prediction

The model prediction is defined as the inner product of the
user and item final embeddings:

ŷui = eTuei (12)

Based on this prediction, the top-k most similar items are
recommended to the user.

The proposed MSCL is used for model training, and the
method is named sLightGCN MSCL. MSCL replaces the
BPR loss that is used in the original LightGCN. Except for
the proposed loss function, our method remains the same as
LightGCN. The L2 regularization for all parameters is also
used following LightGCN, and it is omitted here for clarity.

D. Model Analyses

1) Complexity Analyses: In this subsection, we analyze the
complexity of sLightGCN MSCL following SGL [33]. Since
sLightGCN MSCL does not introduce trainable parameters
and there is no change in model prediction, the spatial com-
plexity and the time complexity of the model inference are
the same as those in LightGCN. The complexity of sLight-
GCN MSCL can be divided into two parts, that of sLightGCN
and MSCL, and they are O(2|E|) + O(2|E|Lds|E|/N) and
O(mN |E|ds), respectively, where E is the edge in the user-
item interaction graph, L, s,m denotes the number of GCN
layers, the number of epochs, the number of multiple positive
samples, respectively, and d,N denotes the embedding size
and the batch size, respectively. For comparison, that of the
BPR loss is O(2|E|ds).

In fact, the overall amount of calculation is significantly
reduced because the number of training epochs is substantially
reduced due to better convergence performance, as shown in
the training efficiency in Section V. The MSCL is O(mN/2)
times larger than the computational cost of BPR, but this is
a simple inner product that is directly accelerated by matrix
operations through the GPU. Therefore, there is no significant
increase in training time in each epoch, as seen in Section V.

2) Pros and Cons: Pros: Compared to the single sampling
of BPR, CL is multisampling, which is more in line with the
reality that people tend to face multiple options instead of
the either-or situation [45]. Theoretical analysis shows that
CL has the ability to mine hard samples, which intrinsically
facilitates the model optimization and training efficiency [33],
[45]. Additionally, MSCL distinguishes the importance of
positive and negative samples by weighting, and makes better
use of limited positive samples. These improvements make
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MSCL better than existing multiplesampling based contrastive
learning methods. Cons: Its shortcoming is the introduction of
some new parameters which need to be adjusted.

IV. EXPERIMENTS

We first introduce the basic information related to the
experiments, such as datasets, evaluation metrics, and hy-
perparameter settings. sLightGCN MSCL is compared with
many strong baselines. We conduct ablation studies to verify
the effectiveness of the proposed improvements. The main
hyperparameters of sLightGCN MSCL are discussed in detail.

A. Datasets

To evaluate the effectiveness of MSCL, we conduct ex-
periments on three benchmark datasets: Yelp2018 [33], [53],
Amazon-Book [33], [53], and Alibaba-iFashion [2], [33].

Yelp2018: Yelp2018 was adopted from the 2018 edition of
the Yelp challenge. Local businesses such as restaurants and
bars are viewed as items.

Amazon-Book: Amazon-review is a widely used dataset
for product recommendation, and Amazon-Book from the
collection is selected.

Alibaba-iFashion: Alibaba-iFashion is a large and rich
dataset for fashion outfit recommendation. Three hundred k
users and all their interactions over the fashion outfits are
randomly sampled by SGL [33]. It is quite sparse, which is a
significant difference from the first two datasets.

TABLE I
STATISTICS OF THE DATASETS.

Dataset Users Items Interactions Density

Yelp2018 31,668 38,048 1,561,406 0.00130
Amazon-Book 52,643 91,599 2,984,108 0.00062

Alibaba-iFashion 300,000 81,614 1,607,813 0.00007

Three datasets vary significantly in domains, size, and spar-
sity. The statistics of the processed datasets are summarized
in Table I. For comparison purposes, we directly use the split
data provided in SGL [33].

B. Evaluation Metrics

Following NGCF, LightGCN, and SGL [22], [33], [53], two
widely used evaluation metrics, Recall@K and NDCG@K,
where K=20, are used to evaluate the performance of top-
k recommendations. Recall measures the number of items
that the user likes in the test data that has been successfully
predicted in the top-k ranking list. NDCG considers the
positions of the items, and higher scores are given if the
items are ranked higher. It is a metric of ranking and thus is
important for the top-k recommendation. The larger the values
are, the better the performance for both metrics.

C. Hyperparameter Settings

We implement our proposed method1 on top of the official
code of LightGCN2 based on PyTorch. We replace the loss
function and follow LightGCN’s settings as much as possible.
The embedding size is fixed to 64, and the default batch size
is 2048 for all models. The learning rate and L2 regular-
ization coefficients are chosen by grid search in the range
of {0.0001, 0.001, 0.01} and {1e − 5, 1e − 4, · · · , 1e − 2}.
These are hyperparameters of the original LightGCN. We
adjust the hyperparameters of MSCL, M and τ , in the ranges
{1, 3, 5, · · · , 15} and {0.1, 0.2, 0.5, 1.0}, respectively. In ad-
dition, τ is usually 0.1 or 0.2. The weight α is adjusted in
[0.4,0.7].

D. Compared Methods

To demonstrate the performance of our method, we select
many strong baselines for comparison. NGCF [22], LR-GCCF
[23], and LightGCN [53] are recently competing baselines
with GCN for top-k recommendation and have been shown to
outperform several methods, including GC-MC [54], PinSage
[55], and NeuMF [10], since previous works [22], [23], [53].
The latest method, SGL [33], is also selected, which is a self-
supervised-based method. In addition, the basic method and
the variable autoencoder-based methods MF and Mult-VAE
are compared.

MF: This is a traditional method based on matrix factoriza-
tion that is based only on the embeddings of users and items,
namely, eu and ei, respectively.

NGCF [22]: NGCF integrates the bipartite graph structure
into the embedding process based on the graph convolutional
network. It explicitly exploits the collaborative signal in the
form of high-order connectivities by propagating embeddings
on the graph structure.

LR-GCCF [23]: This method enhances the recommendation
performance with less complexity by removing the nonlinear-
ity. The final embeddings are the same as NGCF.

LightGCN and sLightGCN [53]: LightGCN is the state-of-
the-art GCN-based collaborative filtering model, and sLight-
GCN is a variant. They are described in detail in Section III.

Mult-VAE [56]: Mult-VAE extends variational autoencoders
(VAEs) to collaborative filtering and uses a multinomial like-
lihood for the data distribution. In addition, it introduces an
additional regularization parameter for optimization. It can be
seen as a special case of self-supervised learning (SSL) for
recommendation.

SGL [33]: SGL is the latest baseline for top-k recom-
mendations. It introduces self-supervised learning into the
recommendation system based on the contrastive learning
framework. It is implemented on LightGCN and uses a multi-
task approach that unites the contrastive loss and the BPR loss
function. SGL mainly benefits from graph contrastive learning
to reinforce user and item representations. Following the paper,
the edge drop-based SGL that achieves the best performance
is adopted here.

1https://github.com/haotangxjtu/MSCL
2https://github. com/gusye1234/LightGCN-PyTorch
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TABLE II
OVERALL PERFORMANCE COMPARISON

Method
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

MF 0.0441 0.0353 0.0329 0.0249 0.1020 0.0474

NGCF 0.0579 0.0477 0.0344 0.0263 0.1043 0.0486
LR-GCCF 0.0591 0.0485 0.0378 0.0292 0.1110 0.0529
LightGCN 0.0639 0.0525 0.0411 0.0315 0.1078 0.0507
sLightGCN 0.0649 0.0525 0.0469 0.0363 0.1160 0.0553

Mult-VAE 0.0584 0.0450 0.0407 0.0315 0.1041 0.0497
SGL 0.0675 0.0555 0.0478 0.0379 0.1126 0.0538

LightGCN MSCL(ours) 0.0681 0.0564 0.0500 0.0391 0.1144 0.0546
sLightGCN MSCL(ours) 0.0691 0.0568 0.0580 0.0466 0.1201 0.0578

TABLE III
ABLATION STUDY

Loss Importance-aware Multipositive samples
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

CL 0.0655 0.0541 0.0480 0.0399 0.1152 0.0556
ICL ✓ 0.0668 0.0548 0.0544 0.0437 0.1165 0.0558

MCL ✓ 0.0677 0.0559 0.0516 0.0425 0.1184 0.0573
MSCL ✓ ✓ 0.0691 0.0568 0.0580 0.0466 0.1201 0.0578

E. Performance Comparison

The performance comparison on the three datasets is shown
in Table II. The best results are shown in bold, while under-
lined scores are the second best. We follow the experimental
results of SGL [33], except for MF, LR-GCCF, and our
methods. After statistical analysis, the standard deviations on
Recall and NDCG are not larger than ±0.0002 under different
initialization seeds. We have the following observations:

MF is the most basic and simplest method and performs
the worst. NGCF, LR-GCCF, and LightGCN are GCN-based
methods. NGCF achieved improvements relative to MF by
introducing the GCN method into top-k recommendations,
especially on the Yelp2008 dataset. LR-GCCF, LightGCN
and sLightGCN can be seen as improvements of NGCF.
Their performances are better than NGCF, and these results
are consistent with the performance in the original paper.
These three methods show the significant role of graph con-
volution methods in recommendation systems. LightGCN is
the strongest baseline and becomes the basis for subsequent
methods, such as SGL and our method. LightGCN removes
the nonlinear activation layer and learning parameters, making
the model more applicable to recommendation systems rather
than simply employing GCN, which illustrates that the GCN
method should be modified to fit the recommendation system.

Mult-VAE and SGL are methods that belong to self-
supervised learning (SSL). The results of Mult-VAE are gener-
ally better than those of NGCF, indicating that the variational
autoencoder-based method and self-supervised learning are
competitive for recommendation. The results of SGL show that
it has a clear boost compared with LightGCN, and suboptimal
results are obtained on two datasets, which demonstrates the
advancement of contrastive learning methods.

The proposed sLightGCN MSCL is the best among all

methods. LightGCN MSCL is also listed as a variant of
our method, which is also superior to other methods. Com-
pared to the latest and best SGL methods, the improve-
ments of sLightGCN MSCL on Yelp2018, Amazon-Book, and
Alibaba-iFashion are 2.37%, 21.34%, 6.67% on Recall, 2.34%,
22.96%, and 7.43% on NDCG, respectively. SGL uses CL
and BPR jointly in the multitask learning approach without
exploiting the potential of CL. Our approach is simpler and
consumes less time, which can be seen in the training effi-
ciency in Section V. This shows the correctness of improving
CL.

F. Ablation Study

MSCL combines two components: the different importance
values of positive and negative samples and the use of multiple
positive samples. ICL and MCL denote importance-aware CL
and multiple positive sample-based CL, respectively. They are
shown in Equations (8)-(10).

1) The effectiveness of the two components: Detailed ab-
lation studies demonstrate the effectiveness of our two com-
ponents, as shown in Table III. The comparison of CL and
ICL, MCL and MSCL shows the effectiveness of adding
weights to distinguish the importance of positive and negative
samples. The comparison of CL and MCL and ICL and MSCL
illustrates the effectiveness of data augmentation based on
multiple positive samples. All the results, the two evaluation
metrics on three datasets in these four comparison groups, in
Table III consistently demonstrate the effectiveness of the two
components.

In addition, we find that the three datasets perform differ-
ently on the two components. Amazon-Book benefits more
from adding weights to distinguish the importance, while the
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Fig. 3. Detailed analysis about the role of multiple positive samples. The horizontal axis, the same size of samples, refers to M*N samples, where N is the
batch size. So the two methods in the figure have the same size of samples for comparisons. MSCL is still better than the Samesize method which does not
use multiple positive samples. This indicates MSCL makes better use of the limited number of positive samples.

Fig. 4. Impact of the weight α. Different datasets have different optimal weights. Thousands of negative samples in the first two datasets should be given
more weight. Alibaba-iFashion is too sparse, and thus, the positive samples are more important.

Fig. 5. Impact of the number of positive samples. The effectiveness of adding positive samples is consistently shown on both curves.

other two datasets improve more significantly on multiple pos-
itive samples. This shows that the proposed two components
are effective but perform differently depending on the dataset.

2) Detailed analysis of the role of multiple positive samples:
More comparisons in training tend to yield better results in
contrastive learning, such as a large batch size. Our data
augmentation approach of using multiple positive samples also
increases the number of comparisons in each epoch. Therefore,
one of the reasons for the good performance of multiple
positive samples also involves more comparisons. However,
we want to show that our proposed approach makes better use
of positive samples, except for the number of comparisons.
Experiments with the same number of comparisons need to
be performed to exclude this factor. We expand the batch size
of ICL to M*N because a user is compared with M*N items
in MSCL, where N is the training batch size.

The results are shown in Fig. 3. Our method consistently
outperforms the latter on the three datasets. Overall, the

performance of the same batch size peaks and falls back
as the batch size increases, especially on the Amazon-Book.
They are significantly worse than the performances of multiple
positive samples when M=9. Yelp2018 and Alibaba-iFashion
have the same trend of change in Fig. 3, which is different
from that of Amazon-Book. . This is consistent with the
above observation in Table III that Yelp2018 and Alibaba-
iFashion behave differently from Amazon-Book. In summary,
the combination of multiple positive samples makes better use
of the limited number of positive samples.

G. Discussion of Hyperparameters

MSCL solves the problems of CL and introduces two
hyperparameters, the weight α and the number of positive
samples m. So this subsection focuses on the impact of these
two hyperparameters. Overall, α varies around 0.5 depending
on the dataset, while m = 5 as the default setting is appropriate.
Experiments show that the hyperparameters are easy to adjust.
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TABLE IV
PERFORMANCE OF MSCL COMPARED WITH BPR ON DIFFERENT METHODS

Method
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

MF BPR 0.0441 0.0353 0.0329 0.0249 0.1020 0.0474
MF MSCL 0.0657(48.98%) 0.0538(52.41%) 0.0478(45.29%) 0.0369(48.19%) 0.1185(16.18%) 0.0576(21.52%)

NGCF BPR 0.0579 0.0477 0.0344 0.0263 0.1043 0.0486
NGCF MSCL 0.0655(13.13%) 0.0538(12.79%) 0.0481(39.83%) 0.0375(42.59%) 0.1152(10.45%) 0.0565(16.26%)

LR-GCCF BPR 0.0591 0.0485 0.0378 0.0292 0.1072 0.0507
LR-GCCF MSCL 0.0658(11.34%) 0.0543(11.96%) 0.0465(23.02%) 0.0360(23.29%) 0.1119(4.38%) 0.0533(5.13%)

sLightGCN BPR 0.0649 0.0525 0.0469 0.0363 0.1160 0.0553
sLightGCN MSCL 0.0691(6.47%) 0.0568(8.19%) 0.0580(23.67%) 0.0466(28.37%) 0.1201(3.53%) 0.0578(4.52%)

1) Impact of the Weight: We adjust the weight α, and
the results are shown in Fig. 4. The trends look somewhat
different which depends on the differences of the datasets.
However, the trends are similar on the whole, increasing and
then decreasing. The keys of the figure are the peaks of the
performance curves. The results show that both weighting
methods achieve better results relative to unweighted when α
is 0.5. The first two datasets both obtain the best performance
at 0.45, while Alibaba-iFashion reaches the best at 0.60. The
main reason for this difference is that Alibaba-iFashion is
the sparsest dataset and has few positive samples of users.
Each user has 49.3, 56.7, and 6.4 positive items on average
on the three datasets. For Yelp2018 and Amazon-Book, the
imbalance problem is the main issue, and thus thousands of
negative samples do require relatively more weights to learn
better. Compared to the other two datasets, positive items
of Alibaba-iFashion are so few that positive samples should
be more important and given more weight. This illustrates
that the first two datasets benefit mainly from solving the
imbalance problem, and the last dataset benefits mainly from
increasing the importance of a limited number of positive
samples. It also demonstrates that the weighting approach can
solve these two problems to balance the importance of positive
and negative samples and can adapt to different datasets,
despite its simplicity.

2) Impact of the number of positive samples: Both MSCL
and MCL are able to illustrate the role of multiple positive
samples, and the results are shown in Fig. 5. All the results
of MSCL and MCL with multiple positive samples are sig-
nificantly better than those with only one positive sample on
the left. Therefore, the proposed data augmentation method
does make better use of the positive samples. MSCL and MCL
have the same tendencies on the three datasets. As the number
of positive samples increases, MSCL and MCL start with a
significant improvement and then change flatly. It can be seen
from Fig. 5 that approximately 5 or 7 is appropriate, and more
positive samples tend to be slightly better. It also shows that all
results of MSCL are better than those of MCL with the same
number of positive samples, demonstrating the effectiveness
of the proposed importance-aware loss.

V. ADVANTAGES OF MSCL

We have obtained optimal results of MSCL by the method
sLightGCN MSCL on top-k recommendation. We focus on
the proposed loss function MSCL in this section. MSCL is
simple and easy to implement, but it also has many other
advantages, such as applicability, suitability for top-k recom-
mendation, and high training efficiency. In addition, MSCL
significantly improves the simplest and most basic model MF
, making it more valuable for applications. Finally, as an
extension, we verify that the problems and improvements of
this paper are also generalizable to multiple sample-based BPR
functions.

A. Applicability of MSCL

To show the applicability of MSCL, we apply it to many
methods and compare it with the BPR loss, and methods with
these two losses are named “*-MSCL” and “*-BPR”.

The results are shown in Table IV, and the percentage of
improvements relative to BPR is also presented. MSCL-based
methods outperform the BPR-based methods on all results
on the three datasets and have significant improvements on
MF, NGCF and LR-GCCF. sLightGCN MSCL consistently
obtains the best results on all datasets and has desirable
improvements. In particular, the improvement on the Amazon-
Book dataset is still approximately 25%.

Furthermore, MF is the most fundamental method based on
embeddings in the recommendation field, and many methods
can be seen as developments of MF. Theoretically, MSCL
is suitable for all embedding-based methods. Thus, the ef-
fectiveness of MF shows that MSCL can be widely used in
recommendation systems. The above experimental results and
analysis show that our proposed MSCL is model-agnostic and
widely adaptable.

B. Suitability for Top-k Recommendations

We believe that MSCL is more suitable for the top-k
recommendation task. This can be illustrated by theoretical
analysis and experimental results.

Theoretically, MSCL is compared with the BPR loss func-
tion. The common goal of both BPR and MSCL is to learn
better feature representation by comparing positive and neg-
ative samples. BPR uses a limited number of comparisons,
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Fig. 6. Better improvements on NDCG for top-k recommendation. The figure shows the percentage improvement of MSCL over BPR on Recall@K and
NDCG@K at different K. Higher improvement of NDCG@K than Recall@K shows MSCL is more suitable for top-k recommendation.

Fig. 7. Training Efficiency. Testing Recall of MSCL and BPR with sLightGCN on three datasets. Here, the total training epochs of MSCL are shown, and
the curve of BPR is too long and thus shows the same training epochs as MSCL.

usually one or several, while MSCL employs thousands.
Moreover, MSCL improves the quality of comparison by
distinguishing the importance of positive and negative samples
and makes better use of the few positive samples. MSCL
makes the similarities between positive and negative samples
more accurate through increasingly better comparisons. The
top-k recommendation is a ranking task, and BPR is pro-
posed specifically for ranking tasks. MSCL outperforms BPR
in terms of theoretical and experimental results. Therefore,
MSCL can obtain better ranking results and makes more sense
for top-k recommendations.

Experimentally, the improvement of the NDCG evaluation
metric is more obvious. NDCG is a ranking-related metric that
is more meaningful for ranking and top-k recommendation
tasks than Recall. The following two observations support our
conjecture well: (1) In Table IV, we found that the boost in
performance by NDCG is generally more than that achieved
by Recall. On average, the improvements are 19.98%, 32.95%,
and 8.64% on Recall and 21.34%, 35.61%, and 11.86% on
NDCG, respectively, for the three datasets. This shows the
superiority of MSCL for top-k recommendation by different
methods. (2) Fig. 6 shows the more significant improvement of
MSCL over BPR on NDCG compared to Recall with different
K. This shows that the ranking performance of NDCG is
consistently higher than that of Recall even as K changes.

C. The Improvement of MSCL on MF
The performance of MF MSCL is particularly noteworthy

in Table IV.
(1) MF MSCL gains the most significant improvement

among all MSCL-based versus BPR-based methods. The re-

sults are even better than those of all BPR-based methods,
including sLightGCN BPR. This indicates that MSCL with
the most basic and simple method is significantly better than
the excellent methods recently proposed, even the state-of-the-
art GCN methods. Thus, to some extent, a good loss function
works better than new models.

(2) In addition, we find that the results of MF MSCL are
also competitive. They are close to or better than those of
NGCF MSCL and LR-GCCF MSCL on all datasets and are
close to sLightGCN MSCL on the Alibaba-iFashion dataset.
This indicates that MSCL is also effective in directly optimiz-
ing embeddings without a complex model, such as GCN.

These observations also indicate that MSCL can achieve
competitive results in the simplest baseline, which is also
consistent with the latest research Graph-MLP [57]. Graph-
MLP indicates that it is sufficient to learn discriminative node
representations only by implementing an MLP and graph-
based CL, without the complex GCN. Compared with Graph-
MLP, MF MSCL is more concise and simple. It is based
only on embeddings and improved CL functions, which is
still effective even without an MLP. Furthermore, Graph-MLP
does not optimize the CL loss function, which shows the great
potential of MSCL.

Three other points need to be highlighted. (1) As the most
basic and simple method, MF MSCL can be widely used
in various tasks of recommendation systems, not only the
top-k tasks. The applicability of MSCL is best illustrated
by MF MSCL. (2) MF MSCL also has other advantages
of MSCL presented in this section, such as being more
suitable for top-k recommendation and fast convergence. (3)
Importantly, it is valuable for applications with high space and
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time requirements or industrial applications at a large scale.

D. Training Efficiency

TABLE V
ACTUAL TRAINING TIME PER EPOCH

BPR
MSCL MSCL MSCL MSCL

M=1 M=5 M=10 M=15

Yelp2018 13 12 15 19 22
Amazon-Book 64 61 65 71 77

Alibaba-iFashion 17 16 19 22 25

The training efficiency of the MSCL is also significantly
improved, as shown in Fig. 7. Because of the large difference
in loss values, following LightGCN and SGL, the test perfor-
mance on three datasets is used to show the convergence speed.
In terms of the number of training epochs required to achieve
optimal performance, more than 900 epochs are required for
BPR, while MSCL achieves the best performance at 46, 3,
and 90 epochs on the three datasets. BPR requires too many
epochs for convergence, while MSCL converges earlier, so we
adopt the same number of epochs as MACL for comparison.

For the first two datasets, MSCL converges directly to
high values that approximate the final performance with slight
fluctuations, while BPR converges slowly at lower values. On
the third dataset, it is slightly more difficult to converge due
to the sparsity of the dataset. The MSCL converges sharply by
approximately 5 epochs to the value that approximates the final
performance. This shows that MSCL has a fast convergence
capability. The training efficiency is improved at least tens
of times on different datasets in terms of training epochs,
as mentioned before. The main reason for the high training
efficiency is that multiple samples are learned at the same
time, as demonstrated in [46].

Moreover, in terms of actual training time, MSCL does not
significantly increase the training time per epoch. Table V
shows the average time consumption in each epoch in seconds.
MSCL takes less time than BPR when one positive sample is
used, as shown in the first two columns of the table. BPR
requires negative sampling, MSCL does not require negative
sampling, and the computation with multiple negative samples
is accelerated by the GPU. When the number of positive
samples increases by 1, the average time increase on the
three datasets is 0.8 s. Such time consumption is completely
negligible. When M=5, MSCL and BPR consume the same
time, but the performance is much better than BPR. The latest
SGL [33] based on the contrastive learning framework takes
approximately 3.7x longer than LightGCN, while our approach
is approximately 1.5 times that of LightGCN.

The above analyses demonstrate that MSCL has remarkable
improvement in convergence speed and training efficiency
compared to BPR. There is no significant increase in time
consumption per epoch, which is an advantage over SGL in
terms of performance and time consumption.

E. Multisample-based BPR Loss (MSBPR)
The proposed MSCL combines ICL and MCL to solve the

problem of different importance values of positive and negative

TABLE VI
PERFORMANCE COMPARISON AMONG BPR, MSBPR AND MSCL

BPR MSBPR MSCL

Yelp2018
Recall 0.0649 0.0670 0.0691
NDCG 0.0525 0.0552 0.0568

Amazon-Book
Recall 0.0469 0.0458 0.058
NDCG 0.0363 0.0371 0.0466

Alibaba-iFashion
Recall 0.1160 0.1172 0.1201
NDCG 0.0553 0.0564 0.0578

samples and insufficient use of positive samples. The problems
and solutions are also appropriate for BPR. Therefore, we
modify the loss function of the multisample-based BPR in
the same way and present the MSBPR function. In this case,
the same sampling method of MSCL is used by MSBPR. The
formula of MSBPR is as follows:

LMSBPR =
M∑

m=1

∑
(u,i)∈D

− log σ
(
αf

(
u, i+

)
/τ

−(1− α)f
(
u, i−

)
/τ

) (13)

where σ is the logistic sigmoid. We use f(u, i) instead of ŷui
by drawing on comparative learning because the ŷui-based
approach does not work.

The results are shown in Table VI, and the baseline is
sLightGCN. The overall MSBPR-based methods are better
than BPR, while the only exception in all results is that the
Recall of MSBPR is worse than BPR on Amazon-Book. It
shows that our proposed idea can be extended to BPR and
other pairwise-based loss functions. In addition, we find that
MSCL works better than MSBPR, especially on the Amazon-
Book dataset, which shows the superiority of the CL function
again and the correctness of improving CL in this paper.
Therefore, MSCL is better than BPR and MSBPR in the field
of recommendation systems.

VI. CONCLUSION

In this paper, we propose the MSCL function for
multisample-based recommendation systems. We distinguish
the different importance values of positive and negative sam-
ples and propose a new data augmentation method to make
better use of positive samples. MSCL is a simple approach but
obtains optimal results. More importantly, it has the advantages
of wide applicability to various models, suitability for top-k
recommendation, and high training efficiency. MSCL makes
the simple and basic MF implementation more valuable for
industrial applications. These advantages make MSCL more
competitive for top-k recommendation tasks.

This work represents an initial attempt to exploit improved
CL for recommendations. We believe that other improvements
based on CL are an important direction. The two identified
problems, the different importance values of positive and
negative samples and insufficient use of positive samples, are
still valuable and deserve to be studied in depth. The proposed
MSCL has the potential to be extended to graph-related fields,
in the multimedia recommendation, as well as other fields.
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