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LAST: Location-Appearance-Semantic-Temporal
Clustering Based POI Summarization

Xueming Qian , Member, IEEE, Yuxia Wu, Mingdi Li, Yayun Ren, Shuhui Jiang , and Zhetao Li

Abstract—When planning a trip, users tend to browse Place-
of-Interest (POI) information on the Internet and then depart.
Many works aimed at summarizing POIs by visual and textual
analysis, while many of them ignored the inter-relationship between
different views offered by the community-contributed information.
In this paper, we propose a City-POI-LOI (CPL) summarization
method to automatically mine POIs from the city-level landmark
images. And a Location-Appearance-Semantic-Temporal (LAST)
clustering method is proposed to mine the popular viewpoints
termed Location-Of-Interest (LOI) in each POI by taking location,
appearance, semantic, and temporal feature into consideration.
We perform text and image summarization for each LOI, and we
further summarize the POIs based on season. We conduct a series
of experiments based on DIV400 and ATCF Dataset. Experimental
results show the effectiveness of the proposed POI summarization
approach.

Index Terms—Clustering, feature extraction, multimedia, POI
summarization, social media.

I. INTRODUCTION

W ITH the popularity of smart terminal and the rapid devel-
opment of social media, more and more users are willing

to share their lives on social network sites, including their travel,
shopping etc.

Thus, there emerges a large amount of social media informa-
tion online, including text, image, video, audio, etc. And with
the popularity of smart phone, images uploaded by users always
have much useful information, e.g., the time of taking photo,
location, tags, viewing times. For example, Flickr had a total of
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87 million registered members and more than 3.5 million new
images uploaded daily in March 2013 [34]. This large amount
of data not only facilitates the big media management but also
gives us a wealth of resources to carry out travel planning [4],
[5], [36]–[38], [43], [44], [47], [63].

A lot of existing works are devoted to excavate POIs from the
massive social media information. As we know, there are many
popular locations where people usually go and take photos. We
call these interesting locations as Location-Of-Interest (LOI).
When planning a trip, users often browse many representative
images provided by websites and then determine where to go.
The representative images are convenient for the visitors to fetch
more detailed information about the POIs. Automatic POI sum-
marization will be time-saving for users to obtain the first-hand
materials of the POI and convenient for them to make plan.

Images shared in social media usually have much supplemen-
tary information, e.g., tags, location, image taken time etc. They
are very valuable information for LOI mining. For instance, im-
ages with similar tags are more likely to be similar [45]. And
locations where many pictures are shot and uploaded are more
likely to be LOIs in POI [4], [20], [36], [37]. Fusing multimodal
information can help us better learn the comprehensive repre-
sentations of POIs and the preferences of users [60], [61]. In this
paper, we treat location, visual, semantic and temporal features
as different views in our multi-view clustering framework. In
[6]–[8], researchers aimed at finding the optimal weights for the
different views, or the best weights between groups within indi-
vidual view. However, they ignored the closeness of the groups
and the diversity of different groups in calculating the cluster-
ing quality within one view and the clustering consistency cross
different views.

Many researchers mined landmark from the large amount
of community-contributed information [1]–[5], [59] and per-
formed personalized POI recommendation based on users’ in-
terests [5], [16], [17], [25], [30]. Zheng et al. [42] mined a com-
prehensive list of landmarks based on 20 million GPS-tagged
photos and online tour guide web pages. It should be noted that
there are two challenges in POI summarization: 1) how to sum-
marize POI accurately by utilizing multi-modality information
available from social media. Many existing works consider the
visual, textual, and location feature independently in LOI mining
[6], [33]. But for the images, the visual distribution is compli-
cated due to luminance variations, and shooting locations angles
changing. The pictures shot in the day are generally bright, while
the pictures shot at night are usually dark. Besides, the location
and textual descriptions also imply the latent popular viewpoints.
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Fig. 1. The framework of the proposed City-POI-LOI summarization.

2) How to summarize the POI by multimodality source infor-
mation rather the only visual feature based approach. There are
many existing works that only provide representative images of
the POIs. Nevertheless, representative textual descriptions such
as tags are also important for users’ understanding of the POIs.
In addition, users are usually concerned about the golden time
for travel. For example, spring is the best time for the cherry
blossom in Japan.

Facing with the above two challenges, we proposed a coarse
to fine POI summarization approach named City-POI-LOI (in
short CPL). The framework of CPL is shown in Fig. 1. It consists
of the following steps. Firstly, we remove the irrelevant images
and reserve the relevant images. Secondly, we mine famous city-
level POIs in each city. Then, a location-appearance-semantic-
time (LAST) clustering approach is proposed to find LOIs for
a POI. Finally, a season based POI summarization approach is
proposed by selecting representative tags and images.

The main contributions of our work are as follows:
1) We propose a LAST clustering method that fuses the lo-

cation, appearance, semantic, and temporal information
into POI summarization system. LAST clustering method
not only finds the best clustering of images, but also im-
proves the performance of LOI mining. Furthermore, we
learn different weights for these four views for multi-view
clustering. Different from traditional clustering method,
we further consider the clustering quality within view and
the consistency across views. Specially, for the clustering
quality within view, we try to guarantee the closeness of
intra-group and the diversity of inter-group to get better
results.

2) We fuse visual representativeness, significance, and sea-
son relevance to rank images for each POI. Besides, TF-
ILF (Tag Frequency-Inverse LOI Frequency) and season
relevance are proposed to rank texts of each LOI. In this
way, we can choose the most representative images and
texts for users to explore interesting, appealing and im-
portant LOIs for trip planning. And we also specially and
innovatively propose a season based POI summarization
approach to show the representative images and texts of
LOIs in different season.

II. RELATED WORK

In this paper, we are aimed to perform POI summariza-
tion on the crowd Dataset. Meanwhile, we propose a new

multi-view clustering method named LAST, so we review two
fields of related works.

A. POI Summarization

Recently, a great number of researches have been dedicated
to visual summarization [1]–[4], [52], [54], [55]. Many of them
use image clustering to classify images, and the information
they use including geographic locations, canonical views, and
scenic themes. For instance, Zhao et al. [31] annotated POIs
with Geo-tagged Tweets. Ying et al. [32] conduct POI recom-
mendation by personalized geographical ranking. Kennedy and
Naaman [1] used the number of users, visual and temporal infor-
mation to choose the representative clusters. Among them, the
temporal information is used to calculate the standard deviation
of dates in each cluster. Then the clusters with higher variabil-
ity in dates are more likely to be representative clusters. They
successfully implemented their method in some aspects such as
clustering on visual features, ranking clusters and ranking repre-
sentative images (denoted CRR). However, they only consider
visual information in clustering stage and they only show the
representative images for users.

Simon et al. [2] used multiuser collections on the Internet
to construct scene summarization. On the base of images with
specified tags, they obtained canonical views (denoted CV) by
clustering of images’ visual properties, and extracted represen-
tative tags for each cluster. Qian et al. [3] modeled viewpoint
within an image in four aspects including horizontal, vertical,
scale and orientation. Then, they used 4-D vectors to construct
the viewpoint vectors for each image. They selected identical
semantic points (ISP) from SIFT points of the image to cap-
ture major and unique parts of a landmark. Finally, they chose
diverse viewpoints in four angles to carry out visual summa-
rization. However, the location information of different images
is ignored. Jiang et al. [4] proposed a location based high fre-
quency shooting location (HFSL) mining method and POI sum-
marization approach. On the base of this method, they also pro-
posed an automatic city-level POI mining method in [5] that
not only considered the location information, but also the vi-
sual appearance. Chum proposed a randomized data mining
method relies on the min-Hash algorithm to speed up the clus-
tering process [41]. Crandall et al. used traditional mean-shift
to perform geo-clustering and to mine high-density locations
that correspond to popular places [40]. Qian et al. [52] summa-
rize the POI images by combing the aesthetics and diversity by
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exploring the saliency from its 3D reconstruction. The repre-
sentative images are selected if the photos contain more salient
regions which are inferred from salient regions in 3D space.
Goel et al. [62] proposed a visual event summarization method
by extracting mid-level visual elements from images associated
with social media events on Twitter.

It is obvious that many existing summarization methods only
show users the visual information of the POIs, excepted for [1],
which considers 3 aspects of features: the number of users, vi-
sual and temporal information. As mentioned before, they only
use the visual features of images for clustering based on k-means
method and they only show the images to users. It is not enough
to provide more rich and comprehensive information for users’
to better understand the LOIs from different views. In our work,
we aim to gain famous POIs automatically for a given city by
a three level City-POI-LOI summarization method, and gener-
ate text and image summarization for a POI. We combine the
appearance, semantic, and temporal information both for clus-
tering and summarization. In this way, we can choose the most
representative images and texts for users to explore interesting,
appealing and important LOIs for trip planning. And we also
specially and innovatively propose a season-based POI sum-
marization approach to show the representative information in
different season.

B. Multi-View Clustering

As the community-contributed information includes many
modalities such as location, appearance, semantic and time, here
we mainly introduce some existing works about multi-view clus-
tering. Especially, the term “view” in this paper refers to different
modalities and different features.

The earlier studies [11] estimated parameters of mixture com-
ponents, thereby group the data into subsets. Thus, the two im-
ages generated by the same mixture component will be assigned
to the same cluster. At the same time, the examples generated
by different components will be assigned to different clusters.
However, they simply look the weights of different views as
equal. For instance, Cao et al. [9] proposed a diversity-induced
multi-view subspace clustering which is extended from the ex-
isting subspace clustering approach. Wang et al. [27] proposed
to combine information from multiple social media websites
to enhance the co-clustering performance of two types of ob-
jects (social media objects and users) in one social network.
Zhang et al. [28] proposed weighted multi-view online competi-
tive clustering approach. It simultaneously exploited the variable
weighting strategy and the online competitive learning and cast
the multi-view clustering problem into an optimization problem.
Quack et al. [46] proposed an approach for mining touristic POIs
from community photo collections in an unsupervised fashion.
They used several modalities information, such as visual, textual
and location. One of the highlights was that they used a large
Dataset consisting of 200,000 photos. Many works that merged
concept learning [13], belief propagation [10], or nonnegative
matrix factorization [12] with multi-view clustering method are
also proposed for clustering, and made very good performance.
Images are similar in some aspects such as e.g., semantic, time,

and location. If we cluster the images into groups in advance,
the multi-view clustering will be faster and more effective. Wang
et al. [51] aimed to study the semantics of point-of-interest by
exploiting the abundant heterogeneous user generated content
(UGC). However, it ignored the relationship between different
modalities UGC. Nie et al. [50] aimed to solve the problem
of uncorrelation between the text and user-generated content
(UGC, such as images) in location-based social networks. They
mainly focused on topic modeling for each image. They also
used a graph clustering method to detect the latent topics for
each venue. However, they only consider the visual and textual
information for clustering.

Mean-shift clustering is a very common method for location
based image clustering [4], [21], [22]. A number of approaches
only use mean-shift with an appropriate bandwidth to find the lo-
cations where so many photos are taken [21], [22]. However, the
visual appearances are often ignored in clustering. Li et al. [39]
proposed a method to speed up reconstruction by a hierarchical
approach.

Some works [6]–[8], [29], [56]–[58] learned the underlying
clustering structure from multiple views by regularizing each
view towards a common consensus. Besides, Cai et al. [6] first
constructed a graph for each view, then they fused all graphs
into a better one. According to the importance, the weight of
every graph is assigned. They showed that their methods were
more immune to the ineffective views. What’s more, some of
approaches conjunctively learned the optimal combination of
each single view graph and the clustering results [7], [8]. Since
the affinity matrix was not required to be positive semi-definite,
the graph based multi-view clustering methods obtained wider
applicability and made good performance. However, MMSC [6]
learns the good features combination in advance and then per-
form clustering, but it does not differentiate the contribution
of different views. MVSpec [8] only finds the optimal weights
for different views, and the weight for the same view is in-
variable. GOMES [7] ignores the clustering consistency across
views.

Recently, Luo et al. [56] proposed a consistent and specific
multi-view subspace clustering method. They learned the shared
consistent representation of all views and the specific represen-
tation for every view. However, they didn’t consider the differ-
ent weights of different views during clustering. Wang et al.
[57] proposed a new graph-based method named Graph-Based
System (GBS). It constructed the graphs of all views, and then
learned the weights of different views to fuse them into a unified
graph. However, they ignore the weights for the same view and
the clustering consistency across views.

Besides, the datasets of many exist works only contain one
modality. For example, [7] use 5 types of features for im-
ages: LBP, GIST, CENTRIST, Dog-SIFT and HOG. As men-
tioned above, social media offers us much useful information
not only including the visual appearance. The multi-view clus-
tering methods only consider visual information is not suitable.

Therefore, we propose to take the location, semantic, tem-
poral, time features into consideration. In addition, we both
consider the clustering quality within view and the consistency
across views to learn the optimal weight between two groups.
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Then we use this weight to cluster the community contributed
images and mine LOIs.

III. CITY-POI-LOI SUMMARIZATION SYSTEM

As shown in Fig. 1, the City-POI-LOI summarization system
mainly consists of three parts: 1) City level POI mining, 2) POI
level LOI mining, and 3) POI summarization. The following will
introduce the City-POI-LOI summarization system in detail.

A. City Level POI Mining

For a given image set collected from social media, we uti-
lize the coarse to fine POI mining approach proposed by Jiang
et al. [4]. The detailed procedures are as follows: firstly we use
tag and geo-tags constraints to obtain the city-related image set.
Then we use mean-shift based geographical clustering approach
to mine the candidate POIs. Finally, we use visual merging to
determine the final POIs of each city. Thus, images in a POI are
geographically near and visually similar.

On the basis of [4], we further use TF-IPF (Tag Frequency-
Inverse POI Frequency) to choose suitable tags to describe the
POI. We calculate the total numbers of tags that occur in each
POI. Let PWij represent the times of tag wj that occurs in the
i-th POI. Then the frequency of tag wj in the i-th POI can be
represented as follows:

pfij =
PWij∑
k PWkj

(1)

Furthermore, in order to guarantee that the tag occurs in a
specific POI with high frequency, and rarely appears in other
POIs, we use the inverse POI frequency that is computed as
traditional IDF as follows:

idfj = log
|P |

|{i : wj ∈ Pi}| (2)

where |P | is the total POI number, and idfj is the inverse POI
frequency of wj . TF-IPF of each tag is computed as follows:

pfidfij = pfij × idfj (3)

After that, we obtain the TF-IPF value of each tag in each
POI. Then we choose the top ranked tags as the representative
tag for POI.

B. POI-Level LOI Mining

After obtaining the POIs in every city, we further mine LOIs
in each POI. These LOIs constitute the popular viewpoints of
the POIs. Our LOI mining method includes three parts: feature
extraction, LAST clustering, and LOI determination.

1) Feature Extraction: In our proposed method, we mainly
use four types of features: location, visual, semantic, and tem-
poral features.

a) Location feature: Location consists of latitude and lon-
gitude. So the location feature of every image can be represented
by a 2-dimensional vector.

b) Visual feature: As for visual appearances, we unsuper-
vised integrate different descriptors such as global features, e.g.,
HOG, color texture feature [19], and local features including

SIFT and GIST. Meanwhile, we also use CNN feature which
calculated from VGG16 Caffe model [23]. We select the output
of the last full-link layer as the CNN feature, and the dimension
is 4096.

c) Semantic feature: As for semantic feature, we use the
tags belong to images. In order to eliminate the noise and mean-
ingless tags such as “Nikon” and “Canon”, we use TF-IDF in ad-
vance [14]. It should be noted that tags like “Nikon” and “Canon”
could be very important in other fields. However, they are noise
in our system. Assume that the total number of the reserved tags
is m. The semantic feature of an image i can be represented as
a m dimensional binary word vector si = [sik]

m
k=1, i.e., one-hot

representation. sik= 1 represents the tag k appears in the im-
age i, and sik= 0 represents it doesn’t appear. In spite of the
one-hot representation of the semantic feature, we also utilize
word2vec to represent each POI [48]. More detailed comparison
is discussed in experiment.

d) Temporal feature: Because season in the southern
hemisphere is in order like autumn, winter, spring, summer, we
first need to split a year into different seasons. But season in the
northern hemisphere is in order like spring, summer, autumn,
winter, and season in the southern hemisphere is different. Here
we use an automatic division method for season division [15].

It should be noted that, different time quantum in a season may
have big differences. For instance, many people prefer to view
the sunrise of Mountain Huang in the early morning but admire
the meteor shower in the evening. So we further apply the same
method to cut a day into four time quantum: morning, noon,
afternoon, evening [15]. Thus, we get four seasons with 16 time
quantum. For simplicity, the temporal vector can be presented
as a sixteen dimensional binary vector. We set Sq as the season
vector of image q, and SLi

as the season representation of LOI
Li.

2) LAST Clustering: We propose a multi-view fusion ap-
proach that fuses the location, appearance, semantic and tempo-
ral features to mine LOIs. Our goal is to find the optimal weight
among groups within different views by maximizing the clus-
tering quality within view and the clustering consistency across
views.

Assume that an image set consisting of n images, and we
denote it as X . The total view number in X is H. Let xi =
{xh

i , i = 1, . . . , n} denote the feature set of image i, and xh
i

is the feature of the h-th view. Then we construct graph for each
view, and correspondingly we build H graphs in total. In each
graph, images belong to the vertex set and similarity of two dif-
ferent images constructs the edge set. The similarity of image
p and image q is measured by the Euclidean distance of their
visual features as follows:

Wh
pq = exp

(
−
∥∥xh

p , x
h
q

∥∥2
δ2

)
, 1 ≤ p, q ≤ n, h = 1, . . . , H.

(4)
where δ is the parameter to control the spread of neighbors in
k-nearest neighbor graph [8].

The similarity matrices are used in LAST clustering. We use
classical clustering method, e.g., K-means or spectral clustering
to segment the graph into K different groups Gh

i , i = 1, . . . ,K
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within different views h = 1, . . . , H , and Gh
i is the image set

that is assigned into the i-th group within the h-th view. We also
record the corresponding clustering center Ch

i . In this paper, we
set K = 40. More detailed discussion of K to the summarization
performance is given in our experiment.

Based on the initial clustering results, we further measure the
cluster quality within views and clustering consistency across
views, and then we adaptive determine the optimal fusion weight
for each view in POI summarization.

a) Clustering quality within views: To maximize the clus-
tering quality within an individual view, each image should
be assigned to the most suitable group with its similar neigh-
bors, and images with dissimilar features should be assigned
into different groups. The goal we want to achieve is to make
the clustering results cross different views as consistent as
possible.

Here we use two criterions to represent the clustering quality
within views: closeness and diversity. Based on the obtained the
groups Gh

i and their group center Ch
i , we measure the closeness

of group Gh
i within h-th view by the average distance from the

group center to all the images belong to the group. And the
smaller the average distance is, the closer the group is. So we
use the average distance to represent the closeness of the group
as follows.

clo (h, i, i) =
1∣∣Gh
i

∣∣ ∑
p:{p|xp∈Gh

i }
dist

(
xh
p , C

h
i

)
(5)

where |Gh
i | is the total number of images that belong to Gh

i , Ch
i

is the center of groupGh
i . xh

p is the feature of image p within h-th
view. dist(·) is the Euclidean distance between two elements.

Meanwhile, many centers are obtained after clustering, and
every center can represent the average attribute of the group.
So the diversity of group Gh

i and Gh
j within the h-th view is

computed by the distance between their group centers as follows:

div (h, i, j) = dist
(
Ch

i , C
h
j

)
(6)

We aim at making the images within the same group close
enough and the images in different groups diverse enough. So
we use a linear combination of the closeness and diversity [35]
to measure the clustering quality within views WV as follows:

WV (h, i, j) = (1− β) div (h, i, j)− βclo (h, i, i) (7)

where the first term is the diversity of group Gh
i and Gh

j within
the h-th view. It is computed by the distance between their group
centers. The second term is to remove bias by subtracting the
average. β ∈ [0, 1] is the trade-off parameter between closeness
and diversity within views.

b) Clustering consistency across views: We not only fo-
cus on the clustering quality within views, but also the clustering
consistency across views. In order to measure the clustering con-
sistency across views, we need to define the group consistency
within the h-th view and the w-th view as follows:

GC (h,w, i, j) =

∣∣Gh
i ∩Gw

j

∣∣∣∣Gh
i ∪Gw

j

∣∣ (8)

where GC(h,w, i, j) is the group consistency between the i-th
group within the h-th view and the j-th group within the w-th
view. |Gh

i ∩Gw
j | denotes the number of image in the intersec-

tion of groups Gh
i and Gw

j , and |Gh
i ∪Gw

j | represents the cor-
responding image number of the union of the two groups.

The consistency within the h-th view can be measured by the
average group consistency between it and all the other views.

CV (h, i, j) =
1

H − 1

H∑
w=1,w �=h

GC (h,w, i, j) (9)

Large CV (h, i, j) means that the groups Gh
i and Gh

j have
high consistency within the same view.

c) Objective function: By considering the clustering qual-
ity within view and clustering consistency across views, the cost
function of LAST clustering can be written as:

Q(a)=

K∑
i=1

K∑
j=i

H∑
h=1

(ahij)
r(αWV (h, i, j)+ (1− α)CV (h, i, j))

=
K∑
i=1

K∑
j=i

H∑
h=1

(aij
h)

r
(α(β · clo(h, i, i)

+ (1− β)div(h, i, j)) + (1− α)CV (h, i, j)

s.t.
H∑

h=1

ahij = 1, ahij ≥ 0, 1 ≤ i ≤ j ≤ K,h = 1, . . . , H (10)

whereWV (h, i, j) is the clustering quality of the group i and the
group j within the h-th view, CV (h, i, j) is the cross view clus-
tering consistency of the i-th group and the j-th group between
the h-th view and all the other views, α ∈ [0, 1] is the trade-off
between the clustering quality within view and clustering con-
sistency across views, r ∈ (1,∞) is the parameter to control the
sparseness of the solution.

We aim to find the optimal weights ahij , h = 1, . . . , H . Maxi-
mizing the objective function by Lagrangian multiplier method
as follows:

a∗ = argmax (Q (a)) (11)

We set the lagrange function with inequality constraint as

L(a, λ, υ) = Q(a) + λ

(
H∑

h=1

ahij − 1

)
+

i·j∑
k=1

υka
h
ij (12)

where Q(a) is the objective function,λ and υkare the constraint
factor. We solve the problem using KKT condition (Karush Kuhn
Tucker), which means the following three conditions must be
true when the optimum values are obtained.

∂L(a, λ, υ)

∂a
= 0, H(a) =

H∑
h=1

ahij − 1 = 0, υk · ahij = 0

(13)
We unite the above three equality to an equation set and solve

the. Solutions of the equation set are the optimal values we need.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 06,2022 at 12:43:08 UTC from IEEE Xplore.  Restrictions apply. 



QIAN et al.: LAST: LOCATION-APPEARANCE-SEMANTIC-TEMPORAL CLUSTERING BASED POI SUMMARIZATION 383

After optimizing ahij , we get the final graph whose vertexes
are the images and edges are the comprehensive weight between
the p-th image and the q-th image that can be represented as
Wpq =

∑H
h=1 a

h
ij ×Wh

pq, p ∈ Gh
i , q ∈ Gh

j . We segment the fi-
nal graph into K different groups and then obtain the correspond-
ing clustering results. We show the algorithm of LAST clustering
in Algorithm 1.

3) LOI Determination: After LAST clustering, the images
are grouped into different clusters. We further conduct a pruning
for the mined clusters. We only reserve the clusters (i.e., LOIs)
with sufficient images and users. In this paper, we set image
threshold as 10 to determine which clusters will be reserved.

C. POI Summarization

Based on the determined LOIs, each POI can be represented
by the representative texts and images from the summarization
of LOIs.

1) LOI Summarization: We choose representative text (i.e.,
tag) and image to represent each LOI.

a) Representative image selection: We use three criterions
such as representativeness, significance, and season relevance to
select representative images for a LOI. The detailed calculations
are as follows:

Representativeness: the images that are similar to most of the
other images within LOI have more possibility to be represen-
tative. Specifically, visual representativeness can be measured
as the average visual similarity from one image to all the oth-
ers within the LOI. The visual representativeness of image q is
calculated as:

vpq =
1

|Li| − 1

|Li|∑
p=1,p �=q

Wpq (14)

where Li denotes the i-th LOI, |Li| represents its image number.

Significance: Social media website, such as Flickr, has
recorded the browsing/view times of each image which implies
its popularity to some extent. We measure the significance of an
image as follows:

sigq = log (v_timesq + 1) (15)

where v_timesq is the view times of image q.
Season Relevance: Different images are captured in different

seasons. After the LAST clustering, we have clustered the sim-
ilar image into the same group. Here we use the average season
factor of all the images in a LOI to represent its season vector
[15]. Thus, for each LOI, we get a 1 × 16 dimension season
vector. Different seasons have different scenes, and the images
that are shot near the season representation are more likely to
represent the LOI. So, we measure the season relevance of two
images based on their season vectors. The season relevance of
image q is calculated as:

srq = 1− dist
(
Sq, S|Li|

)
maxq,Li

(
dist

(
Sq, S|Li|

)) (16)

where Sq is the season vector of image q, and SLi
is the season

representation of LOI Li.
Finally, we use a simple linear combination of vpq, sigq and

srq to calculate the final score of each image[4], [5], [53],

scoreq = vpq + sigq + srq (17)

We rank all the images in the LOI Li and we choose the top
ranked images as its representative images.

b) Representative text selection: Here we select the rep-
resentative tags for every LOI to construct the text summariza-
tion of the POIs. We use TF-ILF (Tag Frequency-Inverse LOI
Frequency) and season relevance to calculate the representative
value of different tags.

TF-ILF: We have used the TF-IPF to choose representative
tags for each POI. Here we use the similar method to calculate
the TF-ILF value of different tags in different LOIs. Details are
available in III.A City Level POI Mining.

Season Relevance: Different tags are corresponding to dif-
ferent seasons. The season relevance value of an image implies
the season relevance of its affiliated tags to some extent. So we
use the image’s season to denote its affiliated tags. We propose
a tag-season relevance measurement approach for tags selection
by linear combination of the TF-ILF value and season relevance.
We choose the top ranked tags to summarize the LOI.

2) Season Based POI Summarization: As we have obtained
the LOIs summarization both with representative texts and im-
ages, we put forward a season based LOI ranking method that
helps users understand well about the POIs’ season changes.
Based on the season representation of each LOI, we utilize the
season with maximal numbers of images as the best matched
season for the LOI. Then we divide the LOIs in the order of
spring, summer, fall and winter. Since the number of the mined
LOIs varies along with POIs, we can get one or more LOIs in
a season. We perform further ranking for the candidate images
and tags, specifically for the images and tags with much higher
significance.
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IV. EXPERIMENT

In order to display the advantage of our proposed LAST clus-
tering method, we compare it with some baselines: Kmeans, SC,
MMSC [6], MVSpec [8], and GOMES [7] and GBS [57].

LAST: our proposed multi-view clustering method, i.e., LOI
mining method in this paper.

Kmeans: this approach first merges different views into a
feature, and then utilizes Kmeans to group images.

Spectral Clustering (SC): this approach first merges different
views together as above Kmeans, and utilizes spectral clustering
to get image clusters.

Multi-Modal Spectral Clustering (MMSC): a multi-view
spectral clustering method [6]. It first learns the combination of
different views, and then finds the optimal spectral clustering.

Multi-View spectral clustering (MVSpec): a multi-view
spectral clustering method [8]. It aims to find the optimal weight
of different views.

GOMES: a group-aware multi-view fusion approach for real
world image clustering [7]. The biggest difference from GOMES
to our proposed method is the criterions of clustering quality
within views and clustering consistency across views. On the
base of diversity, we add closeness to measure the clustering
quality within views.

GBS: a graph-based multi-view clustering method [57]. It
constructed the graphs of all views, and then learned the weights
of different views to fuse them into a unified graph. However,
they ignore the weights for the same view and the clustering
consistency across views.

In order to measure the effectiveness of our proposed method,
especially the introduction of location, semantic, and tempo-
ral features, we perform some comparison experiments on the
ATCF Dataset [4], [5], [36] and DIV400 Dataset [24], [26]. We
use normalized mutual information (NMI), adjusted mutual in-
formation (AMI), and adjusted rand index (ARI) to evaluate the
clustering performance [18]. Given two sets G and C, their NMI
is defined as:

NMI =
I (G,C)√

H (G) ·H (C)
(18)

where H(·) denotes the entropy, I(G,C) is the mutual informa-
tion between G and C. It equals 1 when the two sets are identical
and 0 when the two sets are independent.

A. Datasets

ATCF Dataset is an image Dataset crawled form Flickr, and
mainly includes the images’ affiliated information, e.g., tags,
geo-tags, image taken time and uploading time, views, etc. [4],
[5], [36]. The total number of POIs and LOIs of each city are
shown in Table I.

DIV400 Dataset (The Social Image Retrieval Result Diver-
sification Dataset) consists of Creative Commons data related
to 396 landmark locations and contains 43,418 Flickr photos
together with their Wikipedia and Flickr metadata, and some
content descriptor information (visual and text) [24], [26]. Data
is annotated for the relevance and the diversity of the photos
(both expert and crowd annotations are provided).

TABLE I
DETAILS OF ATCF DATASET

TABLE II
PERFORMANCE COMPARISONS OF DIFFERENT METHODS

B. Clustering Performance Comparison

The clustering performances on different Dataset are illus-
trated in Table II, and the best performance is shown in bold. We
can observe that LAST gains the better performance whether us-
ing K-means clustering method or spectral clustering method,
in short LAST (KM) and LAST (SC). This is due to our ap-
proach both considers the clustering quality within views and
the clustering consistency across views when clustering. In ad-
dition, we also use the group-based weight learning to get the
optimal clustering result. In order to recommend POI with the
most suitable season, the LAST takes season information into
consideration. In addition, the GOMES and GBS perform better
than other compared methods. That’s because they both learn
different weights for different views. Besides, the performance
on DIV400 Dataset is better than that on ATCF dataset. It is be-
cause there are less noisy images in DIV400 Dataset than ATCF
Dataset.

C. Parameter Discussions

1) Discussion of Group Number K: Due to space limitation,
all the discussions in our paper are conducted on ATCF dataset.
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Fig. 2. Discussion of group number. (a) Performance discussion of group
number. (b) Time Cost of different group numbers.

The group number K is used in LAST clustering when mining
LOIs. Here we set K varies from 10 to 100 with the step 10, and
display their NMI, AMI, and ARI of clustering results on ATCF
Dataset in Fig. 2(a). The normalized time cost of different group
numbers is shown in Fig. 2(b).

It can be seen that with the increase of K, the result of cluster-
ing is becoming better and better. But after K = 40, the growth
becomes slow. That’s because when the group number is too
small, the images in the same cluster are quite different, which
will lead to low mutual information among these images. When
the group number is too large, we will obtain more fine-grained
clusters. And the images in the same cluster are very simi-
lar, leading to high mutual information. However, as shown in
Fig. 2(b), the larger the number of clusters, the longer the time
cost.

To make a trade-off between performance and cost time, in
this paper we set K = 40.

2) Discuss of α and β: The object function of LAST cluster-
ing is a weighted linear combination of two criteria: clustering
quality within views and clustering consistency across views,
and the former is also a weighted linear combination of close-
ness and diversity.

In this part, we examine the effects of the corresponding
weighted parameters α and β to achieve the optimal parame-
ter setting ATCF Dataset.

We fix one of the parameters and then change the other one
from 0 to 1 with an interval of 0.1. From Fig. 3(a), we can ob-
serve that when α increases from 0 to 0.1, the NMI value also
increases, and then maintains a stable trend. When α reaches
to 0.9, the performance shows the best. When α = 1, it is
equal to only considering the clustering quality under different
perspectives without considering the consistency of clustering
in different perspectives. At this time, the performance shows a

Fig. 3. Influence of different parameters on the performance of NMI. (a) vary-
ing α while setting β = 0.8, (b) varying β while setting α = 0.9.

Fig. 4. Performances of LAST clustering on different features combinations.

significant decline. From Fig. 3(b), we can see that when β in-
creases from 0.1 to 0.9, the NMI value increases continuously.
The best performance is obtained when β = 0.8. Therefore,
α = 0.9 and β = 0.8 are selected as the best parameters in
ATCF dataset.

D. Effects of Multiple Features

In this paper, we systematically fuse the location, semantic,
appearance and temporal features in the proposed LAST based
POI summarization approach. In order to show the contribution
of each feature in POI summarization, we conduct experiments
on ATCF Dataset using the same parameters K = 40, α = 0.9
and β = 0.8. We show the recommendation performances of
twelve type features in Fig. 4, The symbols L, A, S, T respec-
tively represent the location, appearance, semantic and tempo-
ral feature. The combinations of different factors such as LA,
AS, AT, LAS, LAT, AST, LST and LAST respectively represent
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Fig. 5. The comparison of the summarization result of LST and LAST.

feature is the most indispensable one. We can find that when
fusing four modalities features, the better performances will be
achieved. When fusing all four modalities of features, we get the
best performances that NMI = 0.5105. It proves the superiority
of LAST.

To further demonstrate the effectiveness of the four features,
we observe the summarization results of different combination.
Due to the space limitation, we only show the comparison be-
tween LST and LAST considering that they have the closed NMI
value. We take the Eiffel tower and Notre Dame de Paris as ex-
amples to explain the visualization of summarization results.
The result can be seen in Fig. 5.

We can observe that if we ignore the appearance of images, we
may choose lower quality images as representative images, such
as the images of spring for Eiffel tower. That’s because there are
many images with different views and angles in one POI. If we
don’t consider the visual feature, the model may be difficult to
choose the proper representative images. In addition, we may
also obtain images of other POIs close to the target POI. For
example, the real POI of the autumn image of Notre Dame de
Paris obtained by LST is Versailles. The reason may be that the
Notre Dame and Versailles are close and they are belonging to
the same category. Therefore, only consider the location, textual
and temporal information is not enough to divide them into the
right clusters. Thus, the visual feature is also important to get
better summarization results.

E. POI Summarization Performance Comparison

We have proposed a new framework of POI summarization
and now we compare our method with some existing methods:
Random, CV [2], CRR [1], ISP [3], HFSL [4], and SCCG [20].
Random means that we choose the random selected images/texts
as representative results. For the sake of fairness, the settings of
all the comparison methods are selected by multiple experiments
to choose the best parameters. We invite 10 volunteers to score
for the final POIs summarization considering the relevance, di-
versity and comprehensiveness [21].

Fig. 6. Average scores for the criteria of “Relevance”, “Diversity” and “Com-
prehensiveness” of different methods on the ATCF dataset.

As for these 10 volunteers, they are all researchers who have
worked in the related field for more than 1 years. In addition, they
are not belonging to our research group. In order to guarantee
the reference and persuasion of result, they are asked to give the
score as follows:

Relevance: Are the text and image relevant to the POI? 10-
perfect, 0-irrelevant.

Diversity: Are the summarization results diverse to each
other? 10-perfect, 0-related.

Comprehensiveness: Can the summarization results describe
the POI comprehensively? 10-absolutely, 0-absolutely not.

The relevance is to measure whether the image and text can
represent the characters of the POI. The diversity is to measure
whether the differences between the result pictures and tags are
large enough. The comprehensiveness is to measure whether the
results offer a comprehensive view of the POI. The comprehen-
siveness includes the representativeness and other aspects such
as the style, category, seasonality and so on.

We summarize the score in Fig. 6. We can find that the score
of relevance, diversity and comprehensiveness present a similar
law: although CPL is not the best one in some POI, CPL has the
highest average score on all three criteria. And random selected
results show the worst performance.
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TABLE III
AVERAGE SCORES FOR THE CRITERIA OF P@N, CR@N, AND F1@N OF

DIFFERENT METHODS ON THE ATCF DATASET

Finally, we assess the experimental results with three auto
evaluation criteria referred from [35], they are as follows:

P@N: The percentage of relevant images in top N images. It
represents the relevance standard.

CR@N: The percentage of different topics/aspects retrieved
in the top N images. It represents the diversity standard.

F1@N: The harmonic mean of CR@N and P@N. It repre-
sents the comprehensiveness standard.

We count P@N, CR@N, F1@N in each POI of 9 cities, and
calculate the mean value of 9 cities as the final result. N is al-
terable for different POIs, because the number of images in dif-
ferent summarization of POIs is different. It dependents on the
abundance degree of images that loaded by users in each POI.
We summarize the result in Table III, and find that CPL has the
highest average score on all three criteria, which is the same as
the conclusion made by volunteers. According to the assessment
results both of subjective and objective evaluation, our method
perform best.

F. Discussion of Semantic Feature

Compared to the semantic feature used in this paper, word2vec
[48] are more advanced methods in text encoding. So we carry
out contrast test using word2vec, which is more suitable for tag
encoding. We use gensim 3.0.1 [49] to obtain a 200 dimension
vector for each tag, and use the average value of all tag’s vectors
that belong to the picture as its semantic feature representation.
Table IV shows the experimental results on ATCF.

From the table, we find that most results on three evaluation
criterions promote to some extent after changing word2vec. It
is because word2vec is more powerful than one-hot in word
encoding. Because we first cluster pictures and tags by GPS
information, so the number of tags among a certain location is
not too large. In our experiment, the number is 28,219.

After city-level POI summarization, we have got 13 POIs in
Paris including Eiffel Tower, Notre Dame de Paris, Musée
du Louvre, Palace of Versailles, Paris Disneyland and so on.
Since the number of POIs is large, we only LAST the five POIs
mentioned in Fig. 7. And for each season, we select one image
to be representative. The final summarizations with texts and
images of the five POIs are displayed in Fig. 7.

TABLE IV
PERFORMANCE COMPARISONS OF DIFFERENT SEMANTIC FEATURES ON

ATCF DATASET

As we can see in Fig. 7, taking Eiffel Tower as an example, the
four images in one row correspond to the four seasons, which
have discrimination not only on the visual appearance, but also
on the semantic appearance. In the first image, trees are with-
ered because it is a picture taken in January. As for the second
image, trees are very green. The leaves vary yellow in the third
image. The hue of the last image is dark because it is shot in
winter. All in all, our proposed method for POI summarization
can well summarize the city with different POIs, and it can also
summarize each POI with images and texts in different seasons.

Besides, the semantic information in our summarization re-
sults is representative and helpful. Taking Paris Disneyland as
an example, the representative tags in spring include “grass”,
which can attract users who prefer the lawn. And the “airport”
indicates the convenient transportation. The texts of winter in-
clude “snow” and “cool”, which have big difference compared
with spring and can attract users to enjoy the beautiful snow
scenes. The differences between different seasons can provide
users the comprehensive information to help them make trip
plans. In addition, the visual information of the four representa-
tive images is diverse that illustrates our proposed CPL system
can well cluster the visually similar images.

G. Some Bad Cases of POI Summarization

The LAST clustering method fuse the location, appearance,
semantic, and temporal information for LOI clustering. On this
basis, we generate a season based visual and textual summariza-
tion for each POI. We analysis our clustering and summarization
results and find that there are mainly two types of poor cluster-
ing results. We show the examples of bad cases in Fig. 8. They
are the summarization of Millenium Bridge and Kew Garden
in London. The four images in one row correspond to the four
seasons.

We can observe that:
1) It is difficult to distinct the co-occurrence POIs. For exam-

ple in Fig. 8, the St. Paul’s Cathedral and the Millennium
Bridge in London appear in the same image. It is difficult
to distinguish them into the right clusters. In future work,
we will add more constraints to verify such samples.
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Fig. 7. POI summarization for Eiffel Tower, Notre Dame de Paris, Musée du Louvre, Palace of Versailles, and Paris Disneyland in Paris.

Fig. 8. The examples of some bad cases for Millenium Bridge and Kew Garden in London.

2) There are some irrelevant images about the POIs which
are difficult to be filtered, which will appear in the sum-
marization results. For example in Fig. 8, the representa-
tive image of Kew Garden for winter includes a running
child which is unrelated to the target POI. Although it is
the right image belonging to the POI, it is useless to help
users understand the POI. Therefore, in future work, we
will improve the ranking framework to move the unrelated
images.

V. CONCLUSION

In this paper, we propose a CPL system that consists of
three levels to automatically mine famous POIs for a given

city, and then mine latent popular LOIs in each POI. Finally, it
summarizes the POIs with texts and images. In LAST clus-
tering, the clustering quality within views and clustering con-
sistency across views are considered to evaluate the impor-
tance of different views, and an iterative optimization algorithm
is proposed to learn the clustering results and fusion weights
simultaneously.

Experiments on two realistic image Datasets indicate that
LAST improves the clustering performance compared with
baseline methods, and the whole CPL framework improves the
summarization performance on relevance, diversity and com-
prehensiveness. In future work, we will try more better fusion
and feature extraction methods such as deep learning-based
methods.
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