

Semi-supervised New Slot Discovery with Incremental Clustering

Yuxia Wu Xi'an Jiaotong University wuyuxia@stu.xjtu.edu.cn

Xueming Qian Xi'an Jiaotong University qianxm@mail.xjtu.edu.cn Lizi Liao Singapore Management University lzliao@smu.edu.sg

> Tat-Seng Chua Sea-NExT Joint Lab, NUS dcscts@nus.edu.sg

Motivation: Slot Filling

• Identify contiguous word spans in an utterance based on slots to represent the meaning of the user.

• Supervised methods can only recognize pre-defined entity types from a limited slot set and require a significant amount of labeled training data

Motivation: Slot Filling

• In practical settings, new unseen slots may emerge after the deployment of the dialogue system, rendering these supervised models ineffective.

Utterances:

. . .

I'd like to find a **west** side restaurant that is **expensive**. I want a **moderately priced** restaurant in the **east** part of town. Is there a **cheap** restaurant in the **north** part of town? **bangkok city** serves **thai** food in the **centre** of town. **Da Vinci Pizzeria** is a **cheap italian** restraunt in the **north** area.

3

Existing Methods: Automatic Slot Induction

- 1) Extract candidate slots and values
- 2) Obtain slots via ranking. (chen 2014., chen 2015., Hude cek et al., 2021)

Limitations:

- The ranking process needs deliberate human intervention and largely affects the final results.
- Instead of entirely without labeled data, we often have access to a small amount of that in real practice.

Existing Methods: Cross-domain Adaptation

- Identify unseen slots in the target domain by leveraging evidence from labeled data in the source domain
- One stage methods: (Bapna et al., 2017; Shah et al., 2019; Lee and Jha, 2019; Hou et al., 2020; Oguz and Vu, 2021).

Rely on prior knowledge: slot description, example values

Existing Methods: Cross-domain Adaptation

- Two or more stages methods: (Liu et al., 2020; He et al., 2020; Siddique et al., 2021).
 - 1) slot values identification by sequence labeling
 - 2) slot type classification

Drawbacks of Existing Methods

- Pay less attention to slot value identification
- Heavily rely on auxiliary information
- Fail to provide proper guidance for clustering-friendly features

Problem Setting

• Suppose there is a candidate value $x = \langle w_i, \dots, w_{i+k} \rangle$ of length |x| = k + 1

identified from the utterance U

- The whole dataset \mathcal{D} with N candidate values
- Limited labeled data: $\mathcal{D}^{\mathcal{L}} = \{x_i, y_i\}_{i=1}^M \in \mathcal{X} \times \mathcal{Y}_{\mathcal{L}}$
- Unlabeled data: $\mathcal{D}^{\mathcal{U}} = \{x_i, y_i\}_{i=1}^{N-M} \in \mathcal{X} \times \mathcal{Y}_{\mathcal{U}} \text{ (N-M is not given)}$

Proposed Method: SIC

• SIC: Semi-supervised New Slot Discovery with Incremental Clustering

Proposed Method: Candidate Value Extraction and Filtering

- Extracting: frame semantic parser SEMAFOR (Das et al., 2010, 2014) and NER
- Filtering:
 - remove the stop words by the NLTK
 - remove these spans that appeared less than a certain number of times
 - delete these frequently appeared but meaningless values

Frame semantic parser

https://github.com/swabhs/open-sesame

Proposed Method: Feature Extractor Pre-training

Candidate value $x = \langle w_i, \cdots, w_{i+k} \rangle$ with *n* tokens $(0 \le k \le n)$

• Inner representation

 $\langle \mathbf{e}_i, \cdots, \mathbf{e}_{i+k} \rangle = BERT(\langle w_i, \cdots, w_{i+k} \rangle),$ $\mathbf{v}^{inner} = mean_pooling(\langle \mathbf{e}_i, \cdots, \mathbf{e}_{i+k} \rangle),$

• Context representation

 $U' = \langle w_1, \cdots, [mask]_i, \cdots, [mask]_{i+k}, \cdots, w_n \rangle$ $\langle \mathbf{h}_1, \cdots, \mathbf{h}_n \rangle = BERT(U'),$ $\mathbf{v}^{context} = mean_pooling(\langle \mathbf{h}_i, \cdots, \mathbf{h}_{i+k} \rangle),$

• Final representation

$$\mathbf{v} = tanh(\mathbf{W}_1[\mathbf{v}^{inner}; \mathbf{v}^{context}]^T + \mathbf{b}_1),$$

• Pre-training

$$\mathbf{y} = Softmax(\mathbf{W}_2\mathbf{v}^T + \mathbf{b}_2),$$

Iteratively clustering

- Expand clustering number K
- Semi-supervised clustering
- Centroid-based self-supervision

• Expand K

the size of the *i*-th cluster

• Semi-supervised clustering

Labeled data: the average representations of the candidate values belonging to each slot. Unlabeled data: kmeans++ Force the assignments of the labeled data unchanged

• Centroid-based Self-Supervision

• Select samples with high confidence: $\mathcal{D}^{\mathcal{S}} = \{x_i, y_i : s_i \ge \gamma\}$

 s_i : the similarity score of sample v_i to its centroid

 γ : threshold on the score

- Expand the labeled set: $\mathcal{D}^{\mathcal{L}} = \mathcal{D}^{\mathcal{L}} \cup \mathcal{D}^{\mathcal{S}}$,
- Update the centroids: $\{c_1, \cdots, c_{K_t}\}$
- Update the feature extractor:

$$L_s = -\sum_{i=1}^{|\mathcal{D}^{\mathcal{L}}|} \log \frac{exp(\mathbf{v}_i \cdot \mathbf{c}_i/\tau)}{\sum\limits_{\mathbf{c}_j \neq \mathbf{c}_i} exp(\mathbf{v}_i \cdot \mathbf{c}_j/\tau)},$$

Experiments:

Datasets:

Dataset	Domain	# of utterances	# of slots	
CamRest676 (CR)	Restaurant	2,744	4	
WOZ-hotel(WH)	Hotel	14,435	9	
WOZ-attr (WA)	Attraction	7524	8	
Cambridge SLU (CS)	Restaurant	10,569	5	
ATIS (AT)	Flight	4,978	79	

We randomly select 75% of all slots as the known slots and choose 10% data for each slot as labeled data.

Experiment Results: F1 Score

		CR		CS		WH		WA		AT	
		Extr	GT								
Sup.	Tag-supervised	0.778	_	0.724	-	0.742	-	0.731	- 1	0.848	-
	Dict-supervised	0.705	-	0.753	-	0.750		0.665	=	0.678	-
Unsup.	Chen et al.	0.535	-	0.590	2	0.382	-	0.375	-	0.616	-
	WeakS-notag	0.552	-	0.664	E.	0.388	-	0.383	-	0.648	-
Weakly-sup	. WeakS-full	0.665	_	0.692	-	0.548	-	0.439	- 1	0.710	-
Semi-sup.	BERT-KCL*	0.189	0.224	0.131	0.188	0.178	0.346	0.560	0.731	0.492	0.584
	BERT-MCL*	0.188	0.321	0.129	0.210	0.179	0.332	0.532	0.729	0.504	0.591
	BERT-DTC*	0.131	0.303	0.138	0.206	0.170	0.334	0.545	0.670	0.543	0.578
	CDAC+*	0.204	0.270	0.178	0.221	0.174	0.332	0.552	0.641	0.582	0.588
	DeepAligned	0.663	0.901	0.633	0.899	0.378	0.750	0.644	0.719	0.629	0.676
	SIC(Ours)	0.706	0.913	0.770	0.969	0.588	0.824	0.761	0.851	0.638	0.721

Table 1: Results compared with baselines on F1. * indicates that the method uses the ground truth slot number. *Extr* and *GT* represent that we use extracted candidate values or ground truth values respectively.

- SIC performs consistently better than all the baseline methods on nearly all five datasets.
- Compared with Unsup. and Weakly-sup. methods, SIC maintains a large performance gap.

Experiment Results: Clustering Metrics

	CR		CS		WH		WA		AT	
_	NMI	ARI								
BERT-KCL*	22.06	12.48	12.56	6.57	12.10	8.99	63.27	61.27	29.02	54.42
BERT-MCL*	64.21	63.03	10.60	3.77	11.49	9.19	63.25	61.20	30.65	55.43
BERT-DTC*	64.08	34.25	11.35	2.61	11.67	8.83	64.64	65.51	27.61	52.43
CDAC+*	21.22	13.55	31.12	26.27	11.71	9.05	69.07	71.04	30.69	55.90
DeepAligned	82.05	80.01	88.77	90.20	81.53	76.21	70.84	68.59	71.44	78.78
SIC(Ours)	82.61	81.23	90.62	92.88	87.71	86.86	71.36	72.87	73.70	78.85

Table 2: Results compared with baselines via cluster-based metrics. * indicates that the method uses the ground truth slot number.

- SIC achieves the best performance on all datasets.
- DeepAligned shows comparable performance. However, the fixed cluster number and representations of clusters hinder its adaptability during the learning process.

- We design a semi-supervised learning scheme for new slot discovery, which does not require any prior knowledge about new slots.
- We perform clustering and feature extractor training iteratively to harvest high-quality self-supervised signals and learn discriminative features for grouping values to slots.
- Thank you for your listening!
- Q & A (Email: wuyuxia@stu.xjtu.edu.cn)