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Annular-Graph Attention Model for Personalized
Sequential Recommendation

Junmei Hao, Yujie Dun

Abstract—Sequential recommendations aim to predict the
user’s next behaviors items based on their successive historical
behaviors sequence. It has been widely applied in lots of online
services. However, current sequential recommendations use the
adjacent behaviors to capture the features of the sequence,
ignoring the features among nonadjacent sequential items and
the summarized features of the sequence. To address the above
problems, in this paper, we propose an annular-graph attention
based sequential recommendation (AGSR) model by exploring
user’s long-term and short-term preferences for the personalized
sequential recommendation. For user’s short-term preferences,
AGSR builds an annular-graph on the sequence of user behavior.
Then, AGSR proposes an annular-graph attention applying on the
sub annular-graph to explore local features and applying annular-
graph attention on entire annular-graph to explore the global
features and the skip features. For user’s long-term preferences,
the latent factor model are introduced in AGSR. The experimental
results on two public datasets show that our model outperforms the
state-of-the-art methods.

Index Terms—Attention mechanism,
personalized recommendation, sequential
user preferences.

graph attention,
recommendation,

1. INTRODUCTION

ITH the development of the internet, watching movies
W online, and recording the shopping online have become
very prevailing. However, the explosive information has given
rise to a serious problem called information overload. Users
need to spend a lot of time to choose valuable information from
the mass of information. Recommender systems are introduced
to address the above problem. Recommender systems can filter
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information to help users find products and content they are in-
terested in. Most recommender systems recommend items just
based on the user’s general preferences. However, general pref-
erences ignore the short-term variation of user’s preferences.
Therefore, the sequential recommendation is needed and plays
an important role in the recommender systems.

Sequential recommendations model the user behaviors se-
quence to learn the change of user preferences in a short time,
and use the user behaviors sequence to predict the user’s next be-
haviors. There are two types of user preferences exploring from
user information, namely the long-term and short-term prefer-
ences from user historical information. The former is represented
by static behaviors. For example, some users always prefer the
dress to the trousers, where the static behaviors show these users
have long-term preferences for the dress. The latter is based on
the user’s recent history behaviors which reveal the dynamic and
fluctuate preferences for users. Besides, history behaviors have a
strong effect on the next behaviors of the user. For example, some
users are likely to buy bags or shoes to go with their recently
purchased dress. Thus, we should not only consider long-term
preferences but also take short-term dynamic preferences into
consideration.

As for recommender systems, the models based on collabo-
rative filtering are widely used. Due to the intuitive and simple
characteristic, the methods based on the matrix factorization [1],
[2] become the first choice for the recommender systems. Al-
though these methods can explore features of the user and items,
they don’t consider the influence of user sequential behaviors.

Thus, researchers pay attention to the sequential recommen-
dation and put forward some models. Several models based on
the Markov chain [3]-[5] for the sequential recommendation.
The personalized transfer matrix based on the Markov chain and
the matrix factorization model are fused in the recommender sys-
tem to capture both the short-term preferences and the long-term
preferences. However, with the development of big data, the
computational complexity of these methods is also explosive
growth. Some deep learning models are introduced in the rec-
ommender systems to solve this problem, such as the recurrent
neural network (RNN) [6] and the convolutional neural network
(CNN) [7]. RNN [6], [8], [9] are utilized to model the sequence
dependency of the item to obtain short-term preferences of the
user. CNN can also be utilized for sequence embedding [7] to
model the adjacent items.

However, there are also some challenges in the recommender
system. First, these models mentioned above ignore the global
feature in the sequential behaviors. In this paper, local features
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(a) An example of sequential influence. The behaviors B are influenced by the
behaviors A and the behavior D are influenced by behaviors C
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(b) An example of skip features. The behaviors C are influenced by the behaviors
A and the behavior D are influenced by behaviors B

Fig. 1. An example of sequential influence and skip features.

are the features modeling the adjacent items, skip features rep-
resent the features modeling nonadjacent sequential items, and
global features represent the features modeling summarized in-
formation of sequential items. The models mentioned above
consider the short-term preferences modeling most based on
the local features. For example, in Fig. 1(a), the behaviors B are
influenced by the behaviors A, and the behavior D are influenced
by behaviors C. They use the adjacent behaviors to capture the
features of the sequence, ignoring the summarized features of the
sequence. Secondly, these models also ignore the skip features.
That the item may be influenced by the nonadjacent items can be
called skip features in the recommender systems. For example,
in Fig. 1(b), the behaviors C are influenced by the behaviors A,
and the behavior D are influenced by behaviors B. As for the
application, for example, in the online shopping scene, a user
buy a skirt first. Then for going with this dress’s color, the user
may buy a lipstick. Next, the user buy some cakes. And later,
the user buy another skirt. Obviously, there is no direct influence
between buying a skirt and buying a cake, but there is a certain
correlation between the behavior of buying a skirt this time and
the behavior of buying a skirt last time. Furthermore, the lipstick
may also have influence on the skirt. However, these behaviors
are not adjacent. Thus, extracting global features and skip fea-
tures to cover this situation is a major challenge in sequential
recommendation.

Thus in this paper, we propose an annular-graph attention
based sequential recommendation model for exploring global
features and skip features. First, we introduce an annular-graph
to model sequence patterns. Then, we apply annular-graph at-
tention on the sub annular-graph and entire annular-graph to
get the short-term preference for users. For sub-annular graph,
we explore local features and we explore both the global fea-
tures and the skip features for entire annular-graph. At the same
time, we employ latent factor models (LFM) [10] to capture the
long-term preferences besides the sequential model. Finally, the
recommended list is calculated by combining user short-term
and long-term preferences with the item features. Thus, there
are two aspects about the personalization: (1) We use each user’s
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historical behavior to represent short-term preferences. (2) We
use latent factor model to generate long-term preferences for
each user. The experiments prove that AGSR is very effective
for the sequential recommendation.

The contributions of this work are summarized as follows:

e We propose an annular-graph attention based sequential
recommendation (AGSR) model by exploring user’s long-
term and short-term preferences for the personalized se-
quential recommendation. Our model builds an annular-
graph attention network and also incorporates LFM for
comprehensive user preferences modeling.

® AGSR builds an annular-graph on the sequence of user
behavior and proposes an annular-graph attention. The
annular-graph attention applys on the annular-graph in two
aspects for exploring user’s short-term preferences. (1) Ap-
plying annular-graph attention on sub annular graph ex-
plores local features. (2) Applying annular-graph attention
on entire annular-graph explores both the global features
and skip features.

® We generate a final high-level representation of the user
through the hybrid structure of annular-graph attention
model and LFM. We explore LFM to model the long-term
preferences. Then we merge short-term preference gener-
ated by annular-graph attention model and long-term pref-
erences into the model. AGSR achieves state-of-the-art per-
formance on two real-world challenging datasets for the
sequential recommendation.

This paper is organized as follows. In Section II, a brief
overview of related works is given. Section III introduces the
proposed annular-graph attention recommendation model in de-
tail. Experiments and discussions are reported in Section IV.
Conclusions are drawn in Section V.

II. RELATED WORK

In this section, we briefly introduce the related work in tra-
ditional sequential recommender systems, deep learning based
sequential recommendation and attention network.

A. Traditional Sequential Recommender Systems

The traditional recommender systems are mainly based on
collaborative filtering [1], [2], [11]. [4], [12], [13] solve the
problem of cold start by integrating users’ personal interests,
interpersonal influence of friends and other factors into matrix
factorization. Cheng et al. [14], [15] adapt collaborative filter-
ing for music recommendations by representing songs and venue
types in the shared latent space. Yang et al. [16] propose a data
preprocessing framework to generate the rating data as input to
the collaborative system. Hidayati et al. [17] recommend users
about what to wear better based collaborative filtering. However,
these algorithms do not take the sequential features of user-item
interaction into account. Rendle et al. [3] combine matrix fac-
torization with personalized Markov chain to model both the
long-term intents of users and the sequence effects. Following
this work, Liang et al. [18] propose a co-factor model, comb-
ing matrix factorization with item embedding to improve the
performance of standard matrix factorization and to model the
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sequence pattern. Koren [19] introduces a specific mechanism
to model the time to improve the performance of collaborative
filtering algorithm.

Nevertheless, all these algorithms pay more attention to rat-
ing prediction task, which are not specifically design for top-N
recommendation. To generate a ranking list for the top-/N recom-
mender system, Pan et al. [20] utilize weight low rank approx-
imation [21] and negative example sampling to solve the prob-
lem of negative sample missing based on collaborative filtering
system. Cheng et al. [22] merge word embeddings with ma-
trix factorization into music recommendations. Feng et al. [23]
propose a metric embedding model for the POI recommender
system, combining personality information, geographic location
information and order information to avoid the disadvantages
of matrix factorization. Apart from that work, metric learning
also perform well on sequential recommendation in [24]. Tay
et al. [25] propose a model to learn latent relations that describe
each user item interaction. Zhang et al. [26] apply metric learn-
ing into matrix factorization. A unified model to explore all the
complex interactions together is proposed by [27]. However, the
traditional model are not suitable to large-scale data training due
to the time-consuming.

B. Deep Learning Based Sequential Recommendation

The rise of deep learning has made the recommender system
change dramatically. The recommender systems based on deep
learning break through the limitation of the original method and
greatly improve performance. Salakhutdinov ef al. [28] propose
the model to apply neural networks to recommender systems.
Later, deep learning is widely used in recommender systems.
Gated recurrent unit (GRU) based recurrent neural network is
applied to recommender system in [6].

The recurrent neural network models the sequential pattern
well. Donkers et al. [8] model sequential recommendations by
morphing the GRU and explicitly introducing personalized user
features. Wu et al. [29] and [30] apply a Long Short-Term Mem-
ory (LSTM) to recurrent recommender system for capturing dy-
namic trajectories.

Moreover, recurrent neural network also performs well in ex-
plainable recommender system. Bansal et al. [31] introduce a
recurrent neural network to encode text content of the item in
collaborative filtering. Bharadhwaj and Joshi [32] introduce a
neighborhood based scheme to an LSTM for generating explain-
able recommendation. Zhang et al. [33] apply deep features to
social images by constructing a user interest tree. Bai ef al. [34]
propose a long-short demands-aware model, considering that
repetitive purchasing action represents the long-term persistent
interest of users.

Besides RNN, CNN is also used in recommendation sys-
tem. Chu and Tsai [35] combine the visual features of the up-
loaded photos extracted by CNN with the collaborative filtering
model to recommend personalized restaurant for users. A CNN-
based framework modeling user perception of the image for
dress matching recommender system is proposed in [32]. Kim
et al. [36] combine CNN and probabilistic matrix factorization
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to explore the context information and Gaussian noise. CNN
can also extract sequential features via continuous filter size
variation. Inspired by TextCNN [37], Tang and Wang [7] use
multiple horizontal and vertical filters to model the item se-
quence to capture sequential information. A hybrid mCNN-
SVM approach to boost attribute extraction in recommender
systems is introduced in [38].

Beyond RNN and CNN, reinforcement learning is introduced
in sequential recommendation by [39].

C. Neural Attention Models

In recent years, the attention mechanism is an awkward new
star in the field of recommender systems. It starts based on deep
learning network and has been able to build a stable network with
only the attention mechanism. The neural attention mechanism
imitates the attention changes of human vision attention. The
neural attention mechanism in deep learning is essentially sim-
ilar to the human selective visual attention mechanism, and the
core goal is to select more critical information from numerous
information.

Neural
attention is widely used in computer vision [40]-[42] and
natural language processing. It is also combined with RNN
or CNN to improve the capacity to capture long distance
dependence. Lu et al. [43] pair adaptive attention with LSTM
in image caption to pay more attention to core areas. Bahdnau
et al. [44] introduce the attention mechanism with RNN into
encoder-decoder for machine translation. Vaswani et al. [45]
propose a multi-attention model only based on self-attention
without any other neural network such as CNN or RNN.

Neural attention is not only applied in these aspects. Re-
cently, some studies introduce neural attention into recommen-
dation [26]. Wu et al. [46] introduce dual graph attention net-
works to collaboratively learn representations for social rec-
ommendation. Ying et al. [47] introduce hierarchical attention
mechanism to model the long-term features of users and the
generated short-term features of users by using the attention
mechanism. They finally get the hybrid representation for the
top—N recommendation. Chen et al. [48] introduce attention
into collaborative filtering to solve the challenging of item-level
and component-level implicit feedback in multimedia recom-
mendations. He et al. [49] propose item collaborative filtering
based on attention mechanism and neural network to improve
the expressiveness of features. Tay et al. [SO] propose a pointer
mechanism based on gumbel-softmax, which allows the merg-
ing of discrete vectors into a differentiable neural structure. [5],
[51], [52] use a hybrid encoder with an attention mechanism to
model the session to capture the user’s interest. Gong et al. [53]
utilize CNN and attention mechanisms in conjunction with the
label recommender system.

The mainly difference with exiting methods is that we build
an annular-graph on the sequence of user behavior and apply-
ing an annular-graph attention on the annular-graph in two as-
pects for exploring user’s short-term preferences. The first is
that we apply annular-graph attention on sub annular-graph to
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Fig. 2. The framework architecture of our Annular-Graph Attention Recommendation model. In the “Annular-Graph Attention based Local features Modeling”

part, we just take the updating of the second node as example, the updating of the other nodes is as the same as the second node.

explore local features and the second is that we apply annular-
graph attention on entire annular-graph to explore the global
features.

III. THE PROPOSED ANNULAR-GRAPH RECOMMENDATION
MODEL

This section presents the details of the proposed annular-graph
attention recommendation (AGSR) model. Fig. 2 shows the main
framework of the proposed model. Our framework is first di-
vided into two parts to get the user’s short-term preferences and
long-term preferences respectively, and then the two parts are
combined to get the final recommendation list.

The former part is annular-graph attention based short-term
preferences modeling. For each user, we first feed the embed-
dings of user behaviors sequence into the model as the input to
construct the annular-graph. The user behavior sequence repre-
sents a sequence of user comments, clicks, purchases, and so
on. Secondly, for each annular-graph of successive items, we
extract its local and global features. Thirdly, we combine the lo-
cal features and global features to represent the user’s short-term
preferences. The other part is using the rating matrix as the input
of the latent factor model to obtain user long-term preferences
and item features.

Then, we fuse it with the user long-term preferences generated
by the latent factor model into a multi-layer perception to get
the final user features. Next, we multiply the user features and
the item features generated by the latent factor model to predict
the probability. Finaly, according to the rank of the predicted
probability, we recommend the items to users.

A. Problem Formulation

The details of the problem formulation are as follows. Let
w € U represent a set of users and ¢ € I represent a set of
items, where |U| =M and |I| = K denote the total num-
ber of users and items. Given the user’s L behaviors sequence
(usually L < K), L is the size of the sliding window on the
user’s historical interactions), the goal of sequential recom-
mendation is to predict the items that the user will interact
within the next steps. In this model, 1) each item can be rep-
resented with a d-dimension embedding vector. For each user,
X € RE*4 (R represents the real number set) represents the em-
beddings of his latest L interactions (behaviors sequence) and
X = [x1,22,...,21]. X € R s fed into the annular-graph
attention model to explore the short-term preferences. 2) We use
the latent factor model to mine the long-term preferences. The
latent factor model generates the user features and the item fea-
tures of d-dimension as P € R*M @ € R¥¥ from user-item
rating matrix R, where P € R&M Q€ R%*K are two reduced
dimensional matrices. We randomly initialize the P € R&M
Q € R¥K matrix. The variables u, i, L, d, R are not trainable.
They are fixed before the model training. In addition, the other
variables mentioned above are trainable. Notations are summa-
rized in Table 1.

B. Annular-Graph Attention Based Short-Term Preferences
Modeling

We builds an annular-graph on the sequence of user behavior
and proposes an annular-graph attention in our model to explore
the short-term preferences. Then we introduce the details about
the annular-graph, annular-graph attention and how to utilize
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TABLE I
NOTATIONS

Notation ~ Description

a user
an item

the set of users

the set of items

the number of users

the number of items

the size of the sliding window

on the user’s historical interactions

represents the embeddings of his latest L interactions
the rating matrix

the matrix of user long-term preference

the matrix of item feature

the ring nodes at step t

the center node at step t

local feature

the user comprehensive preferences

the matching score

the number of actions

LLOTI X SRZI~Ts e

<
*
&

PSRN

Embedding
lookup

Iltem

Sub Annular-Graph

= |ines connected to ring node

Fig.3.  When updating ring nodes, we construct a sub annular-graph to repre-
sent the context vector.

them to capture the local features and global features for the
short-term preferences.

1) Annular-Graph and Annular-Graph Attention: This sub-
section introduces the main idea of annular-graph and annular-
graph attention. An annular-graph is a representation of a graph
of item sequences. As shown in Fig. 3, an annular-graph net-
work is a combination of ring nodes and a central node. Each
item in the behaviors sequence corresponds to a ring node in the
annular-graph. The central node acts as a virtual hub node in this
annular-graph, so any two ring nodes can be connected through
the central node. Let r* € RZ*? denote all the ring nodes in each
sequence and let ¢! € R™*? denote the central node at step .

What’s more, the annular-graph attention has the ring connec-
tions and the radical connections, where the ring nodes reflect
the local information of the sequence and the central node re-
flects the global information. When encoding the user interaction
sequence, we first look up the embeddings to get the sequence
embedding X € R%*?. We initialize the ring nodes vector as
r® = X = |11, 29, ..., 2] and initialize the central node vector
asc = % >, ;. For a user, the ring nodes in the annular-graph
represent the successive L items’ token interacted. The central
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node ¢’ can be regarded as a hub that links all ring nodes 7},
1€ (1,2,..., L) together. Adjacent ring nodes are connected to
each other, and non-adjacent ring nodes are connected to each
other through the central node (such as r{ and r} in Fig. 3).
Thus, this annular-graph attention can model the skip features
of the sequential items, which means that the past behaviors may
skip a few steps and impact their non-adjacent behaviors. What’s
more, the annular-graph attention has the ring connections and
the radical connections, where the ring connections reflect the
radical connections of the behaviors sequence and the central
node summarizes the information of ring nodes to reflect the
global features.

The block of annular-graph attention is scaled dot product
attention. The input of scaled dot product attention consists of
three parts like in Fig. 2. In our model, given the vectors k € R*¢
andv € R™9 (is the length of the annular-graph context vector),
we can use a vector ¢ € R to select the values which are more
important with the attention. We first map the node vector and
annular-graph context vector to the same space and then put the
three parts through the transformation of a nonlinear activation
function to get the final parts. Then the annular-graph attention
map (AGALt) is calculated as follows:

Relu(qW?) Relu(ka)T)
Vd
* Relu(viWWV?) (1

AGAtt(q, k,v) = softmax(

where the W9, Wk, W7 are the weight matrices through the
linear projection and trainable.

2) Annular-Graph Attention Based Global Features: Global
features are the features modeling summarized information of
sequential items. The central node can convey the global features
of the sequence in our model. Thus, We first apply annular-graph
attention to the central node to explore the graph for the global
features. We splice the ring nodes vector and the central node
vector to denote the annular-graph context vector of the central
node. Then the following is the update function of the central
node at the step t:

AT = AGAt ([t [ ) 2)

€,

where the ;" represents the splicing of the vectors. Then after
updating the central node at one step, we add a layer normaliza-
tion function to prevent Internal Covariate Shift.

3) Annular-Graph Attention Based Local Features: Local
features are the features modeling the adjacent items. We uti-
lize annular-graph attention on the ring nodes to explore sub
annular-graph for the local features. When updating the ring
node, we construct a sub annular-graph to represent the annular-
graph context vector of the ring node. For example, if we update
r} in the graph, we splice the connected nodes and itself as its
graph context such as nodes connected by the orange lines to it
in Fig. 3.

The i-th node r} is updated by its annular-graph context vector
as shown in Fig. 3. Then the following is the context vector h
and the updating function of the i-th ring node at the step t:

t tooLotot Ll ]
h; = [TiflvTivTi+lvxévc+] (3)
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ritt = AGAtt(rl, hi, h) 4)

As the same as the updating of the central node, we also have
a layer normalization here.

4) The Short-Term Preferences: After the update of all the
ring nodes and the central node, we finally integrate them
through a method to calculate the short-term preferences. To
facilitate the integration of the local features and the global fea-
tures, we first use a max pooling on the all ring nodes states
rt=1[rt,rh, ... r}] to get the r**. In addition, max pooling
function can extract both significant information and compres-
sion reduction for the local features.

7' = MaxPooling(r") (5)

Then we concatenate r*! with the central node state to get the
representation of the short-term preferences.

C. LFM Based Long-Term Preferences Modeling

Latent Factor Model (LFM) is a popular method of matrix
factorization, which has been proved to be successful and ef-
fective in many recommender systems. The core idea of LFM
is to connect users and items through latent features, and auto-
matically cluster according to user behavior statistics. The LFM
model can be divided into multi-dimensional classifications.

Thus, we utilize LFM to generate long-term preferences of
users and items of d-dimension as P € R*M Q € R*™¥ from
user-item rating matrix 2 in our model. R,, ; is a user u’s rating
to the item .

The rating matrix is decomposed into two low-dimensional
matrices by LFM. Then, the predicted value IEL’W- of user u’s
rating of item ¢ can be calculated by the following formula:

Ryi=Y PlQ 6)
d

Because the rating matrix covers all the interactive informa-
tion of the user’s history, so the P, generated by it can express
long-term preferences very well.

D. Features Fusion and Prediction

In order to obtain user comprehensive preferences z, we fuse
user short-term and long-term preferences through a multi-layer
perception (MLP). z can be calculated by the following formula:

z= MLP([r*;c"; P,]) @)

Then the high-level user features z multiplies all the candidate
item embeddings to get the scores y. When recommending, the
items with the higher scores will be recommended to the user.

y=zxQT +b ®)

where Q € R*K denotes the all candidate items embeddings,
b € R¥ denotes the bias. We project the score to the probabilities
by:

PXIIXE ) Xl aysee s Xl 1)) = 0(y) ©)

where the o is a sigmoid activation function.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

E. The Model Training

The training procedure of AGSR includes two-stage strategy.
The first stage is the latent factor model training and the second
stage is the annular-graph attention network training.

1) The Latent Factor Model Training: The first stage is LFM
training to get the users long-term preferences P and items fea-
tures () from user-item rating matrix R in our model. The rating
matrix is decomposed into two low-dimensional matrices by
LFM. The predicted value Ru,i of user u’s rating of item ¢ can
be calculated by the following formula:

Ry =PJQ; (10)

In order to find appropriate matrices P and (), the objective

function is shown as follows :

\IJ(Pv Q) = Z (Ru,i - Ru,i)Q

(u,i)eTrain
2
- PlQ)

= Z (Ru,i

(u,i)eTrain d

(1)

So we can learn the P and () matrices directly by minimiz-
ing the objective function using the rating matrix. We choose
stochastic gradient descent as the optimizer. Finally, the learned
P isrepresentation of user long-term preferences and the learned
Q is item long-term preferences.

2) The Annular-Graph Attention Network Training: The sec-
ond stage is the annular-graph attention network training. In this
stage, the user long-term preferences and item features gener-
ated from the first stage is fixed.

In the second-stage training, given a positive sample and neg-
ative samples, we regard the ranking problem as a binary classi-
fication. Following previous works [7], for each user, a random
sample of items he has not interacted with is taken as a negative
sample. And for each target item i, three items j are randomly
selected as negative samples according to the above rules in our
experiments. Taking the negative logarithm of likelihood, we get
the binary cross-entropy loss as the objective function:

loss = ZZ —log (o (y;')) + Z —109(1 -0 (y;))
7 J#i (12)

In the above equation, the first term denotes the target items’
negative logarithm of likelihood, and the second item denotes the
negative samples’ negative logarithm of likelihood. We train our
model to learn the parameters by minimizing the above equation
on the training set. We find the optimal hyperparameters (eg.,
d, N, L, learning rate) by doing a grid search on the validation
set. Then, we optimize the proposed framework with adaptive
moment estimation [54] (ADAM), which is an extension of the
stochastic gradient descent (SGD) algorithm. ADAM enables ef-
ficient computing and requires less memory. In order to avoid the
phenomenon of over-fitting, we introduce weight decay to make
the weight shrink proportionally and we also introduce dropout.
Instead of changing the network itself, dropout randomly sets
some neurons to be 0, reducing the number of parameters.
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TABLE II
STATISTICS OF THE DATASETS USED IN EXPERIMENTS

Datasets Density Users Items Avg. actions per user Actions
Movielens 5.84% 6.0k 3.4k 165.50 993,000
Gowalla  0.29% 13.1k 14.0k 40.74 533,694

IV. EXPERIMENTS

We first introduce the datasets and metrics used in the experi-
ment, then we give a brief overview of the comparison methods.
Thirdly, we describe the details of the implementation and report
the performance of our model. We end up with discussions on
the influence of different parts of the model and the influence of
the hyperparameters.

A. Dataset Description

We measure the performance of the proposed model and other
baseline models on two benchmark datasets. Both of them have
timestamps of the user-item interactions, which are indispens-
able for the sequential recommendation.

e MovieLens:! It is a commonly used dataset for the recom-
mender system. We use user-movie rating data from this
dataset. It contains approximately 100 million ratings from
6000 users who joined MovieLens in 2000 on nearly 4000
movies. The timestamp of this dataset is represented in
seconds.

e Gowalla:*> Gowalla is constructed by [55] and it is a lo-
cation check-in data set of 6442890 users. We delete the
latitude and longitude information and arrange the check-in
locations id of each user in chronological order. Then we
set the ratings of the interaction as 1.

As the previous work [7], [9], items that have been interacted
by less than n users are deleted. n is 5 and 15 for MovieLens and
Gowalla respectively. We sort the user behaviors in the dataset
in chronological order. Then, we hold the 70% actions in each
user’s sequence as the training set, the next 10% actions to search
the optimal settings of hyperparameters as the validation set.
Then, to evaluate a model’s performance, we hold the rest as the
test set. To identify such datasets, we use density as the criterion.
Data density refers to the ratio of elements with rating data to the
whole matrix space in the user item matrix. We compute their
density as follows:

Density = (13)

M x K
where A represents the number of actions in the dataset, M
represents the user number, and K represents the number of
items.

The detailed statistics of the datasets are shown in Table II.
It shows that the MovieLens dataset is denser than the Gowalla
dataset.

![Online]. Available: https://grouplens.org/datasets/movielens/1 m
2[Online]. Available: https://snap.stanford.edu/data/loc-gowalla.html
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B. Evaluation Metrics

We use Precision@N, Recall@ N, and Mean Average Pre-
cision (MAP) to evaluate the performance. We recommend [NV
items to a user u (denoted as R(u)) and denote the test set of
items that the user u as T'(u): Precision describes the percentage
of recommended items that are recommended correctly. Recall
describes the percentage of the user’s actual behaviors that rec-
ommends the correct items. The mean average precision for a
set of users is the mean of the average precision scores for each
user. The higher the MAP, the higher the correct items rank-
ing in the recommendation, and the better the performance of
the recommender system. As the same as MAP, other indicators
are also better when higher. Precision@N and Recall@ N are
calculated by:

PrecisionQN = 7|R(u);T(u)| (14)
_|R(w) NT(w)]
RecallQN = 7|T(u)| (15)

We define N € (1,5,10) and then compute the average of
these values of all users. The Average Precision (AP) is com-
puted by:

B Z‘]?(:ul)l Precision@QN x rel(N)

AP [R(w)

(16)

where rel(N) = 1 if the N-th item in R(u) in T(u). Then the
MAP is the mean of AP for a set of users.

C. Compared Methods

We compare the model AGSR with the following seven meth-

ods.

® POP. This is a non-personalized algorithm. It is designed to
recommend the most popular items in the system for users
without utilizing other information. It is the simplest, so its
effect is not good.

® BPR [56]. Bayesian Personalized Ranking is a recommen-
dation algorithm commonly used in the recommender sys-
tem. The algorithm ranks items by the maximum posterior
probability obtained from Bayesian analysis, so as to gen-
erate recommendations.

e FMC [3] and FPMC [3]. These models introduce a person-
alized transfer matrix based on the Markov chain, which
enables the model to capture both short-term and long-term
user preferences. In order to solve the sparse problem
of transfer matrix, the matrix factorization model is in-
troduced to reduce parameters and improve performance.
FPMC is a personalized FMC, meaning that each user
learns their own transformation matrix via this method.

e Fossil [57]. The model combines the similarity-based
method with a high-order Markov chain to solve the chal-
lenge of the sparse datasets instead of LFM for modeling
general user preferences.
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TABLE III
PERFORMANCE COMPARISON ON THE TWO DATASETS

Dataset Metric POP BPR FMC FPMC  Fossil GRU4Rec  Caser AGSR  Improve
Prec@1 0.128  0.1478  0.1748  0.2022  0.2306 0.2515 0.2502  0.3015 19.89%
Prec@5 0.1113  0.1288  0.1505  0.1659 0.2 0.2146 0.2175  0.2564 19.47%
Prec@10 0.1011  0.1193  0.1317  0.146  0.1806 0.1916 0.1991  0.2295 15.27%
MovieLens Recall@1 0.005 0.007  0.0104 0.0118 0.0144 0.0153 0.0148  0.0197 28.76%
Recall@5  0.0213  0.0312  0.0432  0.0468  0.0602 0.0629 0.0632  0.0784 24.05%
Recall@10  0.0375  0.056  0.0722  0.0777 0.1061 0.1093 0.1121 0136  21.30%
MAP 0.0687 0.0913  0.0949 0.1053 0.1354 0.144 0.1507 01775  17.78%
Prec@1 0.0517  0.164  0.1532 0.1555 0.1736 0.105 0.1961  0.2105  7.30%
Prec@5 0.0362  0.0983  0.0876  0.0936  0.1045 0.0721 0.1129  0.1201 6.37%
Prec@10 0.0281 0.0726  0.0656  0.0698  0.0782 0.0571 0.0833 0.0872  4.47%
Gowalla Recall@1 0.0064  0.025  0.0234 0.0256  0.0277 0.0155 0.031 0.0372  2.00%
Recall@5  0.0257 0.0743  0.0648  0.0722  0.0793 0.0529 0.0845  0.0915  8.28%
Recall@10  0.0402  0.1077  0.095  0.1059 0.1166 0.0826 0.1223  0.1341  9.64%
MAP 0.0229  0.0767 0.0711  0.0764  0.0848 0.058 0.0928  0.1036 11.63%

e GRU4REC [6]. This is a GRU-based model for session-
based recommendations. Two loss functions based on pair-
wise ranking are used in this model. It performs well on
the dense datasets.

e (Caser[7]. Thisis a Convolution Sequence Embedding Rec-
ommendation Model, which uses lots of convolution filters
to capture sequential features. It also captures user gen-
eral preferences. It performs well on both dense and sparse
datasets.

e AGSR. This model is proposed by us. It explores user
sequential preferences via annular-graph attention. Our
model not only captures the connection between adjacent
items of a sequence, but also the interrelationship between
one or even several items.

Among all of these baselines, FMC, FPMC, Fossil are based
on Markov chain with matrix factorization. GRU4REC and
Caser are neural network based approaches in the sequential
recommendation.

D. Implementation Setting

We implement our model with Pytorch. All experiments are
conducted on a Nvidia GTX 1080. We employ the grid search
method to find the optimal hyperparameters in the validation
set for all algorithms. These include hidden dimension d from
10, 20, 50, 100, and the learning rate from 10~%, 1072, 1073,
1074, 1075. For AGSR itself, we set the target number from 1,
2, 3 and the input sequence length from 1, 2, 3, 4, 5, 6, 7, 8.
We introduce weight decay into loss function, and it is set as
1075, Weight decay makes the weight decay to a smaller value,
which reduces the problem of over fitting to a certain extent.
For a fair comparison, when discussing, we utilize the control
variable method. Only the single variable in the discussion is
changed, and the other variables are set as optimal parameters.

E. Performance Comparison

Table III shows the best results under the optimal hyperparam-
eters settings of the seven baselines and AGSR on the MovieLens
and Gowalla datasets. The last column is the improvement of
AGSR compared to the best baseline. From Table III, we can see
the AGSR always outperforms other baselines in all evaluation

metrics. It proves the effectiveness of our proposed model. We
can observe that our model has significant improvement in terms
of both recall rate and ranking quality (MAP). Especially with
the MovieLens dataset, our precision, recall rates and MAP rates
improve significantly. Precision@ | improves 19.89% compared
with baseline models, Recall@1 improves 28.76% and MAP
improves by 17.78% compared with the best baseline models.
They all show that our model is very effective in improving per-
formance. The Gowalla is more sparse than the MovilensIM
dataset, so the performance is not improved as much on the
Gowalla dataset as on the MovieLens dataset. However, even if
the sequential intensity of sparse datasets is much lower, AGSR
still improves the performance on the sparse dataset relative to
other methods by over 7% on the average in all metrics.

By looking at other methods of comparison, we can also dis-
cover FPMC and Fossil are over FMC under all metrics on the
two datasets. Besides, the performance under the POP model
is always weaker than other models. It reveals that personal-
ized information is indeed in need in the recommender system.
And among the seven baselines, the performance of sequential
models (eg., FPMC and Fossil) is always better than that of
non-sequential models (eg., BPR, POP), revealing the effective-
ness of considering the sequential pattern. The performance of
GRU4REC is an approach to the performance of Caser on the
MovilensIM dataset but much lower on the Gowalla dataset
since Movilens1M dataset is more sequential than Gowalla.
What’s more, the GRU4REC is not a personalized recommender
system, which is only a session-based recommender system.
When comparing AGSR and Caser, we can see that the effec-
tiveness of incorporating global features in an simple manner. It
means with the help of annular-graph attention, AGSR provides
apowerful capability to capture the sequential signal underlying
users’ behavior sequences.

In the next subsections, we set up some experiments to mine
the effect of the hyperparameters deeply.

F. Ablation Study

We evaluate the contribution of each of AGSR’s components,
the long-term preference modeling part, the local features mod-
eling part, the global features modeling part, to the overall
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TABLE IV
MAP ABOUT ANALYSIS OF AGSR COMPONENTS

MovieLens  Gowalla
AGSR-p 0.0864 0.0422
AGSR-1 0.1653 0.0838
AGSR-g 0.1470 0.0795
AGSR-Ig 0.1703 0.1021
AGSR-pg 0.1692 0.0921
AGSR-pl 0.1718 0.0979
AGSR-plg 0.1775 0.1036

performance while keeping all hyperparameters as their opti-
mal settings. The result is shown in Table IV for MovieLens
and Gowalla. For « € {p, 1, g,lp,lg, pg, plg}, AGSR-z denotes
AGSR with the components x enabled. p denotes personaliza-
tion, which uses LEM only, [ denotes the local features modeling
part, g denotes the global features modeling part, [p denotes both
LFM and the local features modeling, g denotes both the local
features modeling and the global features modeling, and pg de-
notes both LFM and the global features modeling. Any missing
component is represented by setting its corresponding to zero.

From both
Table IV and Table III, we observe that the AGSR-p im-
proves performance of recommendation compared with POP.
POP is a method without any user features. When long-term
features of users are added, more personalized features are
considered. Thus personalized portrait of each user is fully
carried out, so as to improve the accuracy of the recommender
system.

However, AGSR-p performs the worst whereas AGSR-/ and
AGSR-g improve the performance significantly. This shows that
treating sequential recommendations as the conventional recom-
mendation will lose useful information. What’s more, AGSR-{
and AGSR-g both present the short-term preferences. Thus, it
is also shown that the short-term preference has a stronger in-
fluence on the recommendation effect than the long-term pref-
erence.

To model the short-term preference in sequential recommen-
dation, we propose the annular-graph attention network, which
explores both local features and global features. From both Ta-
ble IV and Table I1I, we observe that the performance of AGSR-[,
AGSR-g and AGSR-[g surpass most of the compared methods.
The local features can reflect the effect of the adjacent items
and the global features can reflect the effect of the summarized
information of sequential items. Thus, this proves the effective-
ness of our proposed annular-graph network. We also find the
AGSR-[ significantly improves the effect of short-term prefer-
ence modeling. Nevertheless, the AGSR-g doesn’t achieve good
performance alone, whose modeling ability is slightly inferior
to Caser in MovieLens. However, it can extract skip features and
summarized features which are not extracted by local features.
Thus, when AGSR-g combine with AGSR-[ to get the AGSR-lg,
the AGSR-lg performs well on both datasets. Furthermore, the
AGSR-p also can’t achieve good performance alone as men-
tioned before, but it can extra explore the long-term preference.
AGSR-plg achieves the best results by combining short-term
preference and long-term preference. For both datasets, the best
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Fig. 4.  Effects of sequence length L on MovieLens and Gowalla dataset. The
y-axis is MAP and the x-axis is sequence length. (a) MAP for MovieLens and
(b) MAP for Gowalla.
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Fig. 5. Effects of target length on both MovieLens and Gowalla dataset. The
y-axis is MAP and the x-axis is target length.

performance is achieved by jointly using all parts of AGSR, i.e.,
AGSR-plg.

G. Discussions

The sequence length that we discuss in this part is the input
length of the user’s successive interactions. Fig. 4 shows the in-
fluence of the sequence length L. We only change the sequence
length, from 1 to 8, and the other parameters are not changed. In
this case, we set the length of target to 1. As can be seen from the
figure, the selection of sequence length is related to datasets, and
different datasets have different dependencies on sequences. We
observe that in the MovieLens dataset, the larger the sequence
length, the better the performance, whereas in the other dataset,
the increasing sequence length does not improve performance.
This is reasonable, since the sparse dataset has a weaker de-
pendence on the sequence and the denser dataset has a stronger
dependence. If the sequence length of the sparse dataset is too
long, it will bring additional noise, which causes that the perfor-
mance cannot improve. From the Fig. 4, we can observe that the
performance of our model is better than other compared models
in all sequence length. Besides, when the sequence length is set
as 5, the MAP of AGSR is highest.

Target length can reflect the effect of skip features. skip fea-
tures mean that users’ interaction maybe influenced by the sec-
ond to last item or the third to last item instead of the last item.
Fig. 5 illustrates the performance of AGSR and Caser on two
datasets when the length of the target is varied from 1 to 3 and
other parameters remain unchangeable. It can be found from the
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Fig. 6.  Effects of dim on MovieLens and Gowalla dataset. The y-axis is MAP
and the x-axis is the dim of the embedding. (a) MAP for MovieLens and (b)
MAP for Gowalla.

Fig. 5 that the overall performance of AGSR is better than that
of Caser. Caser-1, Caser-2, and Caser-3 represent target number
T at 1, 2, and 3 respectively. And AGSR-1, AGSR-2, AGSR-3
respectively represent target number 7' at 1, 2 and 3. On the
MovieLens dataset, the performance improves with the increase
of the target number. However, on the Gowalla dataset, the target
number at 2 is the best hyperparameter on both models.

Then, we only change the latent dimension of the embedding,
the other parameters are fixed. Fig. 6 shows the experimental
results of the different latent dimensions on the two datasets.
We observe from the figures that the performance of our model
is better than other models in all dimensions. In the MovieLens
dataset, increasing the dimensions does not improve the perfor-
mance of the system. On the contrary, the larger latent dimen-
sion may lead to overfitting. However, on the Gowalla dataset,
we get better results as the dimensions grow. The reason is that
the Gowalla dataset is too sparse so that it needs a larger hid-
den vector space to represent the information. Thus, we choose
the optimal parameter when the dimension value is 50 on the
MovieLens dataset and 100 on the Gowalla dataset.

V. CONCLUSION

In this paper, we propose a novel top- /N sequential recommen-
dation based on annular-graph attention and latent factor model.
We introduce an annular-graph network to model sequence pat-
terns. Then apply annular-graph attention to this network. AGSR
not only captures the connection between adjacent items of a be-
haviors sequence via the sub annular-graph of a sequence, but
also the interrelationship among nonadjacent sequential items
of a behaviors sequence and the summarized features of the se-
quential items via the integral graph. From the experiments, we
observe that our model outperforms the state-of-the-art meth-
ods on two real-world datasets. Particularly, our precision, recall
rates, and MAP rates improve significantly on the MovieLens
dataset. Precision@1 improves 19.89% compared with base-
line models, Recall@1 improves 28.76% and MAP improves
by 17.78% compared with the best baseline models.

In the future, we will make better use of the graph information
of users and items to solve the problem of sparse datasets and
reduce complexity. In addition, we believe that our model is
robust and can be used for other recommendation tasks.
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